\begin{tabular}{|l|l|l|l|}
\hline
& [tex]$3x^2$[/tex] & [tex]$5x$[/tex] & -6 \\
\hline
[tex]$4x^3$[/tex] & [tex]$12x^6$[/tex] & [tex]$20x^4$[/tex] & [tex]$-24x^3$[/tex] \\
\hline
[tex]$2x^2$[/tex] & [tex]$6x^4$[/tex] & [tex]$7x^3$[/tex] & [tex]$-12x^2$[/tex] \\
\hline
\end{tabular}



Answer :

Sure, let's understand the structure of this matrix step by step.

We are given a 3x4 matrix with polynomial expressions inside each cell. The contents of the matrix are:

[tex]\[ \begin{array}{|c|c|c|c|} \hline & 3x^2 & 5x & -6 \\ \hline 4x^3 & 12x^6 & 20x^4 & -24x^3 \\ \hline 2x^2 & 6x^4 & 7x^3 & -12x^2 \\ \hline \end{array} \][/tex]

1. First Row:
- The first element is unspecified.
- The second element is [tex]\(3x^2\)[/tex].
- The third element is [tex]\(5x\)[/tex].
- The fourth element is [tex]\(-6\)[/tex].

Putting this together, we get: [tex]\([ \text{None}, 3x^2, 5x, -6 ]\)[/tex]

2. Second Row:
- The first element is [tex]\(4x^3\)[/tex].
- The second element is [tex]\(12x^6\)[/tex].
- The third element is [tex]\(20x^4\)[/tex].
- The fourth element is [tex]\(-24x^3\)[/tex].

Putting this together, we get: [tex]\([ 4x^3, 12x^6, 20x^4, -24x^3 ]\)[/tex]

3. Third Row:
- The first element is [tex]\(2x^2\)[/tex].
- The second element is [tex]\(6x^4\)[/tex].
- The third element is [tex]\(7x^3\)[/tex].
- The fourth element is [tex]\(-12x^2\)[/tex].

Putting this together, we get: [tex]\([ 2x^2, 6x^4, 7x^3, -12x^2 ]\)[/tex]

Thus, assembling all rows, we have the complete matrix:

[tex]\[ \begin{array}{|c|c|c|c|} \hline \text{None} & 3x^2 & 5x & -6 \\ \hline 4x^3 & 12x^6 & 20x^4 & -24x^3 \\ \hline 2x^2 & 6x^4 & 7x^3 & -12x^2 \\ \hline \end{array} \][/tex]

In summary, the given matrix with polynomial terms is:

[tex]\[ \begin{bmatrix} \text{None} & 3x^2 & 5x & -6 \\ 4x^3 & 12x^6 & 20x^4 & -24x^3 \\ 2x^2 & 6x^4 & 7x^3 & -12x^2 \end{bmatrix} \][/tex]

Let me know if you need any further clarification or assistance!