Answer :

Sure, let's solve each of the products step-by-step.

### (i) Calculate the product [tex]\(\frac{5}{6} \times \frac{7}{11}\)[/tex]:

To find the product of two fractions, simply multiply the numerators and multiply the denominators:

[tex]\[ \frac{5}{6} \times \frac{7}{11} = \frac{5 \times 7}{6 \times 11} = \frac{35}{66} \][/tex]

Evaluating the fraction, we obtain:

[tex]\[ \frac{35}{66} \approx 0.5303030303030303 \][/tex]

### (ii) Calculate the product [tex]\(6 \times \frac{1}{5}\)[/tex]:

To multiply a whole number by a fraction, multiply the whole number by the numerator and keep the denominator the same:

[tex]\[ 6 \times \frac{1}{5} = \frac{6 \times 1}{5} = \frac{6}{5} \][/tex]

Evaluating the fraction, we get:

[tex]\[ \frac{6}{5} = 1.2 \][/tex]

### (iii) Calculate the product of the mixed numbers [tex]\(2 \frac{1}{3} \times 3 \frac{1}{5}\)[/tex]:

First, convert the mixed numbers to improper fractions:

[tex]\[ 2 \frac{1}{3} = \frac{2 \times 3 + 1}{3} = \frac{7}{3} \][/tex]

[tex]\[ 3 \frac{1}{5} = \frac{3 \times 5 + 1}{5} = \frac{16}{5} \][/tex]

Next, find the product of the two improper fractions:

[tex]\[ \frac{7}{3} \times \frac{16}{5} = \frac{7 \times 16}{3 \times 5} = \frac{112}{15} \][/tex]

Evaluating the fraction, we obtain:

[tex]\[ \frac{112}{15} \approx 7.466666666666668 \][/tex]

Thus, the results of our calculations are:
- [tex]\(\frac{5}{6} \times \frac{7}{11} = 0.5303030303030303\)[/tex]
- [tex]\(6 \times \frac{1}{5} = 1.2\)[/tex]
- [tex]\(2 \frac{1}{3} \times 3 \frac{1}{5} = 7.466666666666668\)[/tex]