(c)
[tex]\[
\frac{x^2 - 4x - 5}{x^2 - 3x + 2} \times \frac{x^2 - 5x + 6}{x^2 - 3x - 10} = \frac{(x - 5)(x + 1)}{(x - 1)(x - 2)} \times \frac{(x - 2)(x - 3)}{(x - 1)(x + 1)}
\][/tex]

Simplify the given expression.



Answer :

Sure, let's solve the given expression step by step:

### Given Expression
The initial expression is:

[tex]\[ \frac{x^2 - 4x - 5}{x^2 - 3x + 2} \times \frac{x^2 - 5x + 6}{x^2 - 3x - 10} \][/tex]

### Step 1: Factorize Each Polynomial

Let's factorize each of the polynomials as follows:

1. Numerator 1: [tex]\(x^2 - 4x - 5\)[/tex]
[tex]\[ x^2 - 4x - 5 = (x - 5)(x + 1) \][/tex]

2. Denominator 1: [tex]\(x^2 - 3x + 2\)[/tex]
[tex]\[ x^2 - 3x + 2 = (x - 2)(x - 1) \][/tex]

3. Numerator 2: [tex]\(x^2 - 5x + 6\)[/tex]
[tex]\[ x^2 - 5x + 6 = (x - 3)(x - 2) \][/tex]

4. Denominator 2: [tex]\(x^2 - 3x - 10\)[/tex]
[tex]\[ x^2 - 3x - 10 = (x - 5)(x + 2) \][/tex]

### Step 2: Substitute Factored Forms Into Expression

Substituting the factored forms back into the original expression, we have:

[tex]\[ \frac{(x - 5)(x + 1)}{(x - 2)(x - 1)} \times \frac{(x - 3)(x - 2)}{(x - 5)(x + 2)} \][/tex]

### Step 3: Cancel Common Factors

We can now cancel out common terms present in the numerator and the denominator:

1. (x - 5) appears once in both the numerator and the denominator, so we cancel them.
2. (x - 2) appears once in both the numerator and the denominator, so we also cancel them.

So, the resulting expression after cancelations will be:

[tex]\[ \frac{(x + 1) (x - 3)}{(x - 1) (x + 2)} \][/tex]

### Step 4: Final Simplified Form

The simplified form of the expression is:

[tex]\[ \frac{(x - 3)(x + 1)}{(x - 1)(x + 2)} \][/tex]

### Conclusion

In conclusion, the simplified form of the given expression:

[tex]\[ \frac{x^2 - 4x - 5}{x^2 - 3x + 2} \times \frac{x^2 - 5x + 6}{x^2 - 3x - 10} \][/tex]

after factorization and cancellation of common factors, is:

[tex]\[ \frac{(x - 3)(x + 1)}{(x - 1)(x + 2)} \][/tex]