Nertomance Task 41

Provide an ordered pair, a mapping, a table of values, and a graph of the given equations (use 5 integers). Select just one of the provided equations. Present your work on graph paper.

1. [tex]f(x) = 3x + 4[/tex]
2. [tex]f(x) = 2x - 7[/tex]
3. [tex]f(x) = 2x \cdot 3[/tex]



Answer :

Sure! Let's solve for the first function: [tex]\( f(x) = 3x + 4 \)[/tex].

### Ordered Pairs, Mapping, and Table of Values

First, we'll generate 5 integer x-values from -2 to 2.

1. Select integer x-values:
[tex]\[ x = -2, -1, 0, 1, 2 \][/tex]

2. Calculate the corresponding y-values using the equation [tex]\( f(x) = 3x + 4 \)[/tex]:
[tex]\[ \begin{align*} f(-2) &= 3(-2) + 4 = -6 + 4 = -2 \\ f(-1) &= 3(-1) + 4 = -3 + 4 = 1 \\ f(0) &= 3(0) + 4 = 0 + 4 = 4 \\ f(1) &= 3(1) + 4 = 3 + 4 = 7 \\ f(2) &= 3(2) + 4 = 6 + 4 = 10 \\ \end{align*} \][/tex]

3. Generate the ordered pairs:
[tex]\[ \{ (-2, -2), (-1, 1), (0, 4), (1, 7), (2, 10) \} \][/tex]

4. Create a mapping (dictionary) from x to y:
[tex]\[ \{ -2: -2, -1: 1, 0: 4, 1: 7, 2: 10 \} \][/tex]

5. Prepare a table of values:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -2 & -2 \\ \hline -1 & 1 \\ \hline 0 & 4 \\ \hline 1 & 7 \\ \hline 2 & 10 \\ \hline \end{array} \][/tex]

### Graph of the Function

To plot the function [tex]\( f(x) = 3x + 4 \)[/tex] on graph paper:

1. Label the axes. The x-axis will range from -2 to 2, and the y-axis from -2 to 10.
2. Plot the ordered pairs:
[tex]\[ \begin{align*} (-2, -2) \\ (-1, 1) \\ (0, 4) \\ (1, 7) \\ (2, 10) \\ \end{align*} \][/tex]
3. Draw and connect the points. Since we have a linear equation, the points lie on a straight line.

Now, draw the line passing through these points to represent the function [tex]\( f(x) = 3x + 4 \)[/tex].

### Summary

- Ordered Pairs: \{ (-2, -2), (-1, 1), (0, 4), (1, 7), (2, 10) \}
- Mapping: \{ -2: -2, -1: 1, 0: 4, 1: 7, 2: 10 \}
- Table of Values:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -2 & -2 \\ -1 & 1 \\ 0 & 4 \\ 1 & 7 \\ 2 & 10 \\ \hline \end{array} \][/tex]

- Graph:

A straight line passing through the points \{ (-2, -2), (-1, 1), (0, 4), (1, 7), (2, 10) \}, respectively.

By following these steps, you can see how the function behaves in a visual and tabular format.