Divide:

[tex]\[
\frac{14 m^2 - 28 m^8 - 7 m}{7 m}
\][/tex]

A. [tex]\(2 m - 28 m^8 + 7 m\)[/tex]

B. [tex]\(2 m - 4 m^7 + 1\)[/tex]

C. [tex]\(2 m - 4 m^7\)[/tex]

D. [tex]\(2 m^2 - 4 m^8 + m\)[/tex]



Answer :

To divide the expression [tex]\(\frac{14 m^2 - 28 m^8 - 7 m}{7 m}\)[/tex], follow these steps:

1. Factor the numerator and denominator:

The numerator is [tex]\(14 m^2 - 28 m^8 - 7 m\)[/tex] and the denominator is [tex]\(7 m\)[/tex].

2. Separate the terms in the numerator and divide each by the denominator:

[tex]\[ \frac{14 m^2}{7 m} - \frac{28 m^8}{7 m} - \frac{7 m}{7 m} \][/tex]

3. Simplify each term individually:

- For the first term: [tex]\(\frac{14 m^2}{7 m}\)[/tex]

[tex]\[ 14 m^2 \div 7 m = 2 m \][/tex]

- For the second term: [tex]\(\frac{28 m^8}{7 m}\)[/tex]

[tex]\[ 28 m^8 \div 7 m = 4 m^7 \][/tex]

- For the third term: [tex]\(\frac{7 m}{7 m}\)[/tex]

[tex]\[ 7 m \div 7 m = 1 \][/tex]

4. Rewrite the simplified terms together:

[tex]\[ 2 m - 4 m^7 - 1 \][/tex]

Therefore, the simplified expression is:
[tex]\[ 2 m - 4 m^7 - 1 \][/tex]

The correct answer is:
C) [tex]\(2 m - 4 m^7\)[/tex]