Factor completely [tex]$81 x^4 - 16$[/tex]:

A. [tex](3x - 2)(3x - 2)(9x^2 + 4)[/tex]

B. [tex](3x - 2)(3x + 2)(9x^2 - 4)[/tex]

C. [tex](3x - 2)(3x + 2)(9x^2 + 4)[/tex]

D. [tex](3x + 2)(3x + 2)(9x^2 + 4)[/tex]



Answer :

Sure, let's go through the process of factoring the expression [tex]\(81x^4 - 16\)[/tex] step-by-step.

1. Identify the type of expression: The given expression [tex]\(81x^4 - 16\)[/tex] is a difference of squares. Recall that [tex]\(a^2 - b^2\)[/tex] factors into [tex]\((a - b)(a + b)\)[/tex].

2. Rewrite the expression as a difference of squares:
[tex]\[ 81x^4 - 16 = (9x^2)^2 - 4^2 \][/tex]
3. Apply the difference of squares formula:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
Here, [tex]\(a = 9x^2\)[/tex] and [tex]\(b = 4\)[/tex]. Therefore, we can rewrite the expression as:
[tex]\[ (9x^2 - 4)(9x^2 + 4) \][/tex]

4. Factor each term if possible: Now, focus on the term [tex]\(9x^2 - 4\)[/tex] which is another difference of squares. Specifically:
[tex]\[ 9x^2 - 4 = (3x)^2 - 2^2 \][/tex]
Again, using the difference of squares:
[tex]\[ (3x)^2 - 2^2 = (3x - 2)(3x + 2) \][/tex]

5. Combine all factors: Now that we have factored [tex]\(9x^2 - 4\)[/tex], we can write the complete factorization of the original expression:
[tex]\[ 81x^4 - 16 = (3x - 2)(3x + 2)(9x^2 + 4) \][/tex]

Thus, the completely factored form of [tex]\(81x^4 - 16\)[/tex] is [tex]\((3x - 2)(3x + 2)(9x^2 + 4)\)[/tex]. Therefore, the correct answer is:

[tex]\[ (3x - 2)(3x + 2)(9x^2 + 4) \][/tex]