Answered

Find the mean for the given frequency distribution.

\begin{tabular}{c|c}
Value & Frequency \\
\hline
12 & 2 \\
17 & 12 \\
22 & 20 \\
31 & 13 \\
33 & 10 \\
\end{tabular}

A. 2.0
B. 30.3
C. 24.6
D. 25.5



Answer :

To determine the mean for the given frequency distribution, follow these steps:

1. List the values and their corresponding frequencies:

[tex]\[ \begin{array}{c|c} \text{Value} & \text{Frequency} \\ \hline 12 & 2 \\ 17 & 12 \\ 22 & 20 \\ 31 & 13 \\ 33 & 10 \\ \end{array} \][/tex]

2. Calculate the total number of data points by summing up all the frequencies:

[tex]\[ 2 + 12 + 20 + 13 + 10 = 57 \][/tex]

3. Calculate the weighted sum of values by multiplying each value by its corresponding frequency and then summing these products:

[tex]\[ 12 \times 2 + 17 \times 12 + 22 \times 20 + 31 \times 13 + 33 \times 10 \][/tex]

Performing the multiplications first:

[tex]\[ 12 \times 2 = 24 \\ 17 \times 12 = 204 \\ 22 \times 20 = 440 \\ 31 \times 13 = 403 \\ 33 \times 10 = 330 \][/tex]

Now sum these results:

[tex]\[ 24 + 204 + 440 + 403 + 330 = 1401 \][/tex]

4. Calculate the mean by dividing the weighted sum by the total number of data points:

[tex]\[ \text{Mean} = \frac{\text{Weighted Sum}}{\text{Total Number of Data Points}} = \frac{1401}{57} = 24.57894736842105 \][/tex]

5. Round the mean to one decimal place if required:

[tex]\[ 24.6 \][/tex]

Thus, the mean of the given frequency distribution is [tex]\(24.6\)[/tex].