Answer :

Let's begin solving the trigonometric equation step-by-step.

Given:
[tex]\[ \frac{\cos A}{\sec 2A} - \frac{\sin A}{\csc 2A} = \cos 3A \][/tex]

We'll simplify the left-hand side of the equation first.

Recall that:
- [tex]\(\sec x = \frac{1}{\cos x}\)[/tex]
- [tex]\(\csc x = \frac{1}{\sin x}\)[/tex]

Using these identities, we can rewrite the left-hand side expression:

[tex]\[ \frac{\cos A}{\sec 2A} = \cos A \cdot \cos 2A \][/tex]

[tex]\[ \frac{\sin A}{\csc 2A} = \sin A \cdot \sin 2A \][/tex]

So the left-hand side now looks like:

[tex]\[ \cos A \cdot \cos 2A - \sin A \cdot \sin 2A \][/tex]

Next, we use the product-to-sum formulas in trigonometry. Specifically, we use the cosine addition formula:

[tex]\[ \cos(x + y) = \cos x \cos y - \sin x \sin y \][/tex]

By comparing with:

[tex]\[ \cos A \cos 2A - \sin A \sin 2A \][/tex]

We recognize that it's now in the form of [tex]\(\cos(x + y)\)[/tex] with [tex]\(x = A\)[/tex] and [tex]\(y = 2A\)[/tex]:

[tex]\[ \cos A \cos 2A - \sin A \sin 2A = \cos(A + 2A) = \cos 3A \][/tex]

Thus, we have simplified the left-hand side to:

[tex]\[ \cos 3A \][/tex]

Hence, the equation now reads:

[tex]\[ \cos 3A = \cos 3A \][/tex]

Both sides of the equation are indeed equal, verifying our initial expression. Therefore, the given trigonometric identity holds true:

[tex]\[ \frac{\cos A}{\sec 2A} - \frac{\sin A}{\csc 2A} = \cos 3A \][/tex]