Select the correct answer.

Which expression is equivalent to the given expression?

[tex]\sqrt{45}[/tex]

A. [tex]9 \sqrt{5}[/tex]
B. [tex]5 \sqrt{3}[/tex]
C. [tex]3 \sqrt{5}[/tex]
D. [tex]5 \sqrt{9}[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\sqrt{45}\)[/tex], let's simplify the radical expression step by step.

1. Factor the number inside the square root:

We start with [tex]\( \sqrt{45} \)[/tex]. To simplify this, we look for factors of 45 that are perfect squares.

[tex]\[ 45 = 9 \times 5 \][/tex]

2. Use the property of square roots:

The property [tex]\( \sqrt{a \times b} = \sqrt{a} \times \sqrt{b} \)[/tex] allows us to break the original square root into two separate square roots.

[tex]\[ \sqrt{45} = \sqrt{9 \times 5} = \sqrt{9} \times \sqrt{5} \][/tex]

3. Simplify the square root of the perfect square:

Since [tex]\( \sqrt{9} = 3 \)[/tex], we can further simplify:

[tex]\[ \sqrt{9} \times \sqrt{5} = 3 \times \sqrt{5} \][/tex]

4. Combine the simplified terms:

Therefore, the expression [tex]\( \sqrt{45} \)[/tex] simplifies to:

[tex]\[ \sqrt{45} = 3 \sqrt{5} \][/tex]

5. Identify the correct answer:

Comparing this with the given multiple-choice options:

- A. [tex]\( 9 \sqrt{5} \)[/tex] is not equivalent.
- B. [tex]\( 5 \sqrt{3} \)[/tex] is not equivalent.
- C. [tex]\( 3 \sqrt{5} \)[/tex] is equivalent.
- D. [tex]\( 5 \sqrt{9} \)[/tex] is not equivalent.

Thus, the correct answer is:

[tex]\[ \boxed{3 \sqrt{5}} \][/tex]