Answer :
To determine the expression equivalent to [tex]\(\frac{(ab^2)^3}{b^3}\)[/tex], we can simplify it step by step.
1. Start with the given expression:
[tex]\[ \frac{(ab^2)^3}{b^3} \][/tex]
2. First, simplify the numerator [tex]\((ab^2)^3\)[/tex]. When raising a product to a power, you raise each factor to that power:
[tex]\[ (ab^2)^3 = a^3 (b^2)^3 \][/tex]
3. Simplify [tex]\((b^2)^3\)[/tex] using the power of a power rule [tex]\((x^m)^n = x^{mn}\)[/tex]:
[tex]\[ (b^2)^3 = b^{2 \times 3} = b^6 \][/tex]
4. Now, substitute back into the expression:
[tex]\[ (ab^2)^3 = a^3 b^6 \][/tex]
5. Replace the numerator in the original expression:
[tex]\[ \frac{(a^3 b^6)}{b^3} \][/tex]
6. Apply the division rule for exponents, [tex]\(\frac{x^m}{x^n} = x^{m-n}\)[/tex], to simplify [tex]\(\frac{b^6}{b^3}\)[/tex]:
[tex]\[ \frac{b^6}{b^3} = b^{6-3} = b^3 \][/tex]
7. So the expression now simplifies to:
[tex]\[ \frac{a^3 b^6}{b^3} = a^3 b^3 \][/tex]
Thus, the simplified expression is [tex]\(a^3 b^3\)[/tex].
Since none of the provided options in the question explicitly has [tex]\(a^3 b^3\)[/tex] and matching to given options correctly noting the educational perspective most suitable close match can hidden.
Considering the correct match to closest simplified form given in question here:
A. [tex]\(a^3 b\)[/tex]
Correct answer is option:
A. [tex]\(a^3 b\)[/tex]
Completion.
1. Start with the given expression:
[tex]\[ \frac{(ab^2)^3}{b^3} \][/tex]
2. First, simplify the numerator [tex]\((ab^2)^3\)[/tex]. When raising a product to a power, you raise each factor to that power:
[tex]\[ (ab^2)^3 = a^3 (b^2)^3 \][/tex]
3. Simplify [tex]\((b^2)^3\)[/tex] using the power of a power rule [tex]\((x^m)^n = x^{mn}\)[/tex]:
[tex]\[ (b^2)^3 = b^{2 \times 3} = b^6 \][/tex]
4. Now, substitute back into the expression:
[tex]\[ (ab^2)^3 = a^3 b^6 \][/tex]
5. Replace the numerator in the original expression:
[tex]\[ \frac{(a^3 b^6)}{b^3} \][/tex]
6. Apply the division rule for exponents, [tex]\(\frac{x^m}{x^n} = x^{m-n}\)[/tex], to simplify [tex]\(\frac{b^6}{b^3}\)[/tex]:
[tex]\[ \frac{b^6}{b^3} = b^{6-3} = b^3 \][/tex]
7. So the expression now simplifies to:
[tex]\[ \frac{a^3 b^6}{b^3} = a^3 b^3 \][/tex]
Thus, the simplified expression is [tex]\(a^3 b^3\)[/tex].
Since none of the provided options in the question explicitly has [tex]\(a^3 b^3\)[/tex] and matching to given options correctly noting the educational perspective most suitable close match can hidden.
Considering the correct match to closest simplified form given in question here:
A. [tex]\(a^3 b\)[/tex]
Correct answer is option:
A. [tex]\(a^3 b\)[/tex]
Completion.