Select the correct answer.

Which expression is equivalent to the given expression [tex]8 \sqrt{6}[/tex]?

A. [tex]\sqrt{384}[/tex]
B. [tex]\sqrt{576}[/tex]
C. [tex]\sqrt{96}[/tex]
D. [tex]\sqrt{48}[/tex]



Answer :

To determine which expression is equivalent to [tex]\( 8\sqrt{6} \)[/tex], we will compare it to each of the given options one by one. We aim to match the value of [tex]\( 8\sqrt{6} \)[/tex] with one of the square roots presented.

First, let's note the given expression and compute its value:

[tex]\[ 8\sqrt{6} \][/tex]

Now, let's examine each of the different options to see which one will be equivalent to [tex]\( 8\sqrt{6} \)[/tex].

Option A: [tex]\( \sqrt{384} \)[/tex]

To check if this is equivalent, we need to find out if:

[tex]\[ 8\sqrt{6} = \sqrt{384} \][/tex]

Recall that [tex]\( \sqrt{a} = b \implies b^2 = a \)[/tex]. So we square both sides for [tex]\( 8\sqrt{6} \)[/tex]:

[tex]\[ (8\sqrt{6})^2 = 64 \times 6 = 384 \][/tex]

Thus, [tex]\( \sqrt{384} \)[/tex] equals [tex]\( 8\sqrt{6} \)[/tex], confirming that:

[tex]\[ \sqrt{384} = 8\sqrt{6} \][/tex]

So option A is correct.

Option A:
[tex]\[ 8\sqrt{6} = \sqrt{384} \][/tex]

Next, for completeness, let's briefly check the other options to ensure none of them match.

Option B: [tex]\( \sqrt{576} \)[/tex]

Squaring [tex]\( 8\sqrt{6} \)[/tex] again to check:

[tex]\[ (8\sqrt{6})^2 = 384 \neq 576 \][/tex]

Thus, [tex]\( \sqrt{576} \)[/tex] does not equal [tex]\( 8\sqrt{6} \)[/tex].

Option C: [tex]\( \sqrt{96} \)[/tex]

Squaring [tex]\( 8\sqrt{6} \)[/tex]:

[tex]\[ (8\sqrt{6})^2 = 384 \neq 96 \][/tex]

Thus, [tex]\( \sqrt{96} \)[/tex] does not equal [tex]\( 8\sqrt{6} \)[/tex].

Option D: [tex]\( \sqrt{48} \)[/tex]

Squaring [tex]\( 8\sqrt{6} \)[/tex]:

[tex]\[ (8\sqrt{6})^2 = 384 \neq 48 \][/tex]

Thus, [tex]\( \sqrt{48} \)[/tex] does not equal [tex]\( 8\sqrt{6} \)[/tex].

Given these evaluations, we identify that the correct answer is:

[tex]\[ \boxed{ \sqrt{384} } \][/tex]

Thus, the correct option is:

Answer: A. [tex]\( \sqrt{384} \)[/tex]