Type the correct answer in each box. Use numerals instead of words.

Consider this expression:
[tex]\[ -4x^2 + 2x - 5(1 + x) \][/tex]

What expression is equivalent to the given expression?
[tex]\[\square x^2 + \square x + \square \][/tex]



Answer :

To simplify the expression [tex]\(-4x^2 + 2x - 5(1 + x)\)[/tex], we will follow these steps:

1. Distribute the -5 through the parentheses:

[tex]\[ -5(1 + x) = -5 \cdot 1 + (-5) \cdot x = -5 - 5x \][/tex]

2. Substitute this back into the original expression:

[tex]\[ -4x^2 + 2x - 5 - 5x \][/tex]

3. Combine like terms:

- The [tex]\(x\)[/tex] terms: [tex]\(2x - 5x = -3x\)[/tex]
- The constant term: [tex]\(-5\)[/tex]

4. Rewrite the expression with the combined terms:

[tex]\[ -4x^2 - 3x - 5 \][/tex]

Therefore, the expression equivalent to the given expression [tex]\( -4x^2 + 2x - 5(1 + x) \)[/tex] is:

[tex]\[ -4x^2 + (-3)x + (-5) \][/tex]