Drag each label to the correct location in the equation. Not all tiles will be used.

The density of mercury is 13.6 grams per cubic centimeter. Complete the steps for converting [tex]13.6 \frac{g}{cm^3}[/tex] to [tex]\frac{kg}{m^3}[/tex].

[tex] \left(1 \, \text{kg} = 1,000 \, \text{g}, \, 1 \, m^3 = 10^6 \, cm^3 \right) [/tex]

- 13,600
- [tex]10^6[/tex]
- 1,360
- 1 g
- 1 kg
- [tex]1 m^3[/tex]

[tex] \frac{13.6 \, g}{cm^3} \times \frac{(1 \, kg)}{1000 \, g} \times \frac{(10^6) \, cm^3}{(1 \, m^3)} = \frac{(13,600) \, kg}{m^3} [/tex]



Answer :

Sure, let's break down the conversion step-by-step:

1. We start with the given density [tex]\( \frac{13.6 \, g}{cm^3} \)[/tex].

We need to convert grams to kilograms and cubic centimeters to cubic meters.

2. Convert grams to kilograms:
[tex]\[ 1 \, kg = 1000 \, g \][/tex]
[tex]\[ \frac{1 \, kg}{1000 \, g} \][/tex]

3. Convert cubic centimeters to cubic meters:
[tex]\[ 1 m^3 = 10^6 \, cm^3 \][/tex]
[tex]\[ \frac{10^6 \, cm^3}{1 \, m^3} \][/tex]

4. Now, we multiply these conversions with the given density:
[tex]\[ \frac{13.6 \, g}{cm^3} \times \frac{1 \, kg}{1000 \, g} \times \frac{10^6 \, cm^3}{1 \, m^3} = \frac{13.6 \times 10^6}{1000} \frac{kg}{m^3} \][/tex]

5. Simplify the expression:
[tex]\[ \frac{13.6 \times 10^6}{1000} = 13,600 \, kg/m^3 \][/tex]

So, the step-by-step filled in equation would be:
[tex]\[ \frac{13.6 \, g}{cm^3} \times \frac{1\, kg}{1000 \, g} \times \frac{10^6 \, cm^3}{1 \, m^3} = \frac{13,600 \, kg}{m^3} \][/tex]