Select the best answer for the question.

Complete the following equation using [tex]$\ \textless \ $[/tex], [tex]$\ \textgreater \ $[/tex], or [tex][tex]$=$[/tex][/tex]:

[tex]\[ 7 \quad 24 / 4 \][/tex]

A. [tex]$\ \textgreater \ $[/tex]

B. [tex]$\ \textless \ $[/tex]

C. [tex][tex]$=$[/tex][/tex]



Answer :

To complete the equation [tex]\( 7 \quad 24 / 4 \)[/tex] using one of the comparison operators [tex]\(<\)[/tex], [tex]\(>\)[/tex], or [tex]\(=\)[/tex], follow these steps:

1. Begin by evaluating the expression on the right side of the equation.
[tex]\[ 24 / 4 \][/tex]

2. Calculate the result of this division:
[tex]\[ 24 \div 4 = 6 \][/tex]

3. Now compare the value on the left side of the equation, which is 7, with the result on the right side, which is 6.

4. Determine the appropriate comparison operator:
- If 7 is greater than 6, we use [tex]\(>\)[/tex].
- If 7 is less than 6, we use [tex]\(<\)[/tex].
- If 7 is equal to 6, we use [tex]\(=\)[/tex].

By comparing 7 and 6, it's evident that:
[tex]\[ 7 > 6 \][/tex]

Therefore, the correct equation is:
[tex]\[ 7 > 6 \][/tex]

The best answer is:
A. [tex]\(>\)[/tex]