Find the solution set of the inequality:
[tex]\[
16x - 7 \leq -71
\][/tex]

[tex]\[ x \quad \square \][/tex]



Answer :

Sure, I'll guide you through the steps to solve the inequality [tex]\(16x - 7 \leq -71\)[/tex].

1. Start with the given inequality:
[tex]\[ 16x - 7 \leq -71 \][/tex]

2. Isolate the term with [tex]\(x\)[/tex]:
- To do that, add 7 to both sides of the inequality to get rid of the constant term on the left-hand side.
[tex]\[ 16x - 7 + 7 \leq -71 + 7 \][/tex]
- Simplifying this, we get:
[tex]\[ 16x \leq -64 \][/tex]

3. Solve for [tex]\(x\)[/tex]:
- To isolate [tex]\(x\)[/tex], divide both sides of the inequality by 16.
[tex]\[ \frac{16x}{16} \leq \frac{-64}{16} \][/tex]
- Simplifying the fractions, we get:
[tex]\[ x \leq -4 \][/tex]

So, the solution set of the inequality [tex]\(16x - 7 \leq -71\)[/tex] is:
[tex]\[ x \leq -4 \][/tex]