Answer :
To find solutions to the linear equation [tex]\(3x - 4y = 12\)[/tex], we need to determine the corresponding [tex]\(y\)[/tex]-values for given [tex]\(x\)[/tex]-values. Here is a step-by-step calculation for each [tex]\(x\)[/tex]-value provided in the table:
1. For [tex]\(x = 0\)[/tex]:
[tex]\[ 3(0) - 4y = 12 \][/tex]
[tex]\[ 0 - 4y = 12 \][/tex]
[tex]\[ -4y = 12 \][/tex]
[tex]\[ y = \frac{12}{-4} \][/tex]
[tex]\[ y = -3 \][/tex]
So, when [tex]\(x = 0\)[/tex], [tex]\(y = -3\)[/tex].
2. For [tex]\(x = 8\)[/tex]:
[tex]\[ 3(8) - 4y = 12 \][/tex]
[tex]\[ 24 - 4y = 12 \][/tex]
[tex]\[ -4y = 12 - 24 \][/tex]
[tex]\[ -4y = -12 \][/tex]
[tex]\[ y = \frac{-12}{-4} \][/tex]
[tex]\[ y = 3 \][/tex]
So, when [tex]\(x = 8\)[/tex], [tex]\(y = 3\)[/tex].
3. For [tex]\(x = 12\)[/tex]:
[tex]\[ 3(12) - 4y = 12 \][/tex]
[tex]\[ 36 - 4y = 12 \][/tex]
[tex]\[ -4y = 12 - 36 \][/tex]
[tex]\[ -4y = -24 \][/tex]
[tex]\[ y = \frac{-24}{-4} \][/tex]
[tex]\[ y = 6 \][/tex]
So, when [tex]\(x = 12\)[/tex], [tex]\(y = 6\)[/tex].
Now we can complete the table with the calculated [tex]\(y\)[/tex]-values:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline 0 & -3 \\ \hline 8 & 3 \\ \hline 12 & 6 \\ \hline \end{tabular} \][/tex]
1. For [tex]\(x = 0\)[/tex]:
[tex]\[ 3(0) - 4y = 12 \][/tex]
[tex]\[ 0 - 4y = 12 \][/tex]
[tex]\[ -4y = 12 \][/tex]
[tex]\[ y = \frac{12}{-4} \][/tex]
[tex]\[ y = -3 \][/tex]
So, when [tex]\(x = 0\)[/tex], [tex]\(y = -3\)[/tex].
2. For [tex]\(x = 8\)[/tex]:
[tex]\[ 3(8) - 4y = 12 \][/tex]
[tex]\[ 24 - 4y = 12 \][/tex]
[tex]\[ -4y = 12 - 24 \][/tex]
[tex]\[ -4y = -12 \][/tex]
[tex]\[ y = \frac{-12}{-4} \][/tex]
[tex]\[ y = 3 \][/tex]
So, when [tex]\(x = 8\)[/tex], [tex]\(y = 3\)[/tex].
3. For [tex]\(x = 12\)[/tex]:
[tex]\[ 3(12) - 4y = 12 \][/tex]
[tex]\[ 36 - 4y = 12 \][/tex]
[tex]\[ -4y = 12 - 36 \][/tex]
[tex]\[ -4y = -24 \][/tex]
[tex]\[ y = \frac{-24}{-4} \][/tex]
[tex]\[ y = 6 \][/tex]
So, when [tex]\(x = 12\)[/tex], [tex]\(y = 6\)[/tex].
Now we can complete the table with the calculated [tex]\(y\)[/tex]-values:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline 0 & -3 \\ \hline 8 & 3 \\ \hline 12 & 6 \\ \hline \end{tabular} \][/tex]