Choose all the solutions for the equation [tex]a + 3y = 9[/tex]. (There could be more than one, choose all that make the statement true.)

A. None of these are solutions.
B. (0, 3)
C. (6, 1)
D. (-3, -3)



Answer :

To identify which pairs [tex]\((a, y)\)[/tex] satisfy the equation [tex]\(a + 3y = 9\)[/tex], we will check each given option step-by-step.

1. Checking the pair [tex]\((0, 3)\)[/tex]:
[tex]\[ a = 0, \quad y = 3 \][/tex]
Substitute these values into the equation:
[tex]\[ 0 + 3 \cdot 3 = 0 + 9 = 9 \][/tex]
Since this is true, [tex]\((0, 3)\)[/tex] is a solution.

2. Checking the pair [tex]\((6, 1)\)[/tex]:
[tex]\[ a = 6, \quad y = 1 \][/tex]
Substitute these values into the equation:
[tex]\[ 6 + 3 \cdot 1 = 6 + 3 = 9 \][/tex]
Since this is true, [tex]\((6, 1)\)[/tex] is a solution.

3. Checking the pair [tex]\((-3, -3)\)[/tex]:
[tex]\[ a = -3, \quad y = -3 \][/tex]
Substitute these values into the equation:
[tex]\[ -3 + 3 \cdot (-3) = -3 - 9 = -12 \][/tex]
Since this is not true, [tex]\((-3, -3)\)[/tex] is not a solution.

After verifying each pair, the solutions to the equation [tex]\(a + 3y = 9\)[/tex] are:

[tex]\[ (0, 3) \quad \text{and} \quad (6, 1) \][/tex]

So the correct answers are:
- [tex]\((0, 3)\)[/tex]
- [tex]\((6, 1)\)[/tex]