What is the center of a circle whose equation is [tex]$x^2 + y^2 - 12x - 2y + 12 = 0$[/tex]?

A. [tex]$(-12, -2)$[/tex]
B. [tex]$(-6, -1)$[/tex]
C. [tex]$(6, 1)$[/tex]
D. [tex]$(12, 2)$[/tex]



Answer :

To determine the center of the circle given by the equation [tex]\( x^2 + y^2 - 12x - 2y + 12 = 0 \)[/tex], we can follow these steps to transform the equation into its standard form, which is [tex]\( (x - h)^2 + (y - k)^2 = r^2 \)[/tex]. Here, [tex]\((h, k)\)[/tex] is the center of the circle, and [tex]\(r\)[/tex] is its radius.

1. Rewrite the equation grouping [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms:
[tex]\[ x^2 + y^2 - 12x - 2y + 12 = 0 \][/tex]

2. Move the constant term to the other side:
[tex]\[ x^2 - 12x + y^2 - 2y = -12 \][/tex]

3. Complete the square for the [tex]\(x\)[/tex] terms:
[tex]\[ x^2 - 12x = (x - 6)^2 - 36 \][/tex]

4. Complete the square for the [tex]\(y\)[/tex] terms:
[tex]\[ y^2 - 2y = (y - 1)^2 - 1 \][/tex]

5. Substitute back into the equation:
[tex]\[ (x - 6)^2 - 36 + (y - 1)^2 - 1 = -12 \][/tex]

6. Combine constants on one side:
[tex]\[ (x - 6)^2 + (y - 1)^2 - 37 = -12 \][/tex]

7. Isolate the squared terms:
[tex]\[ (x - 6)^2 + (y - 1)^2 = 25 \][/tex]

Now that we have the equation in the standard form [tex]\( (x - h)^2 + (y - k)^2 = r^2 \)[/tex], we can identify the center [tex]\((h, k)\)[/tex]:

From [tex]\( (x - 6)^2 + (y - 1)^2 = 25 \)[/tex],

The center [tex]\((h, k)\)[/tex] is [tex]\((6, 1)\)[/tex].

Therefore, the center of the circle is [tex]\(\boxed{(6, 1)}\)[/tex].