Answer :

Let's simplify the given expression step-by-step to find:

[tex]\[ \left(\frac{x^a}{x^{-b}}\right)^{a-b} \times \left(\frac{x^b}{x^c}\right)^{b+c} \times \left(\frac{x^{-a}}{x^{-c}}\right)^{c+a} \][/tex]

### Step 1: Simplify each of the individual fractions inside the parentheses

#### First Term: [tex]\(\left(\frac{x^a}{x^{-b}}\right)^{a-b}\)[/tex]

Using the property of exponents [tex]\(\frac{x^m}{x^n} = x^{m-n}\)[/tex], we get:

[tex]\[ \frac{x^a}{x^{-b}} = x^{a - (-b)} = x^{a + b} \][/tex]

So the first term is:

[tex]\[ \left(x^{a + b}\right)^{a - b} \][/tex]

#### Second Term: [tex]\(\left(\frac{x^b}{x^c}\right)^{b+c}\)[/tex]

Similarly,

[tex]\[ \frac{x^b}{x^c} = x^{b - c} \][/tex]

So the second term is:

[tex]\[ \left(x^{b - c}\right)^{b + c} \][/tex]

#### Third Term: [tex]\(\left(\frac{x^{-a}}{x^{-c}}\right)^{c+a}\)[/tex]

Again, applying the same property,

[tex]\[ \frac{x^{-a}}{x^{-c}} = x^{-a - (-c)} = x^{-a + c} \][/tex]

So the third term is:

[tex]\[ \left(x^{-a + c}\right)^{c + a} \][/tex]

### Step 2: Apply the Power Rule [tex]\((x^m)^n = x^{mn}\)[/tex] to each term

Now we will apply the power of a power rule to each of the simplified terms:

1. [tex]\(\left(x^{a + b}\right)^{a - b} = x^{(a + b)(a - b)}\)[/tex]
2. [tex]\(\left(x^{b - c}\right)^{b + c} = x^{(b - c)(b + c)}\)[/tex]
3. [tex]\(\left(x^{-a + c}\right)^{c + a} = x^{(-a + c)(c + a)}\)[/tex]

### Step 3: Multiply the Simplified Expressions

Our expression now is:

[tex]\[ x^{(a + b)(a - b)} \times x^{(b - c)(b + c)} \times x^{(-a + c)(c + a)} \][/tex]

We can combine these as:

[tex]\[ x^{(a + b)(a - b) + (b - c)(b + c) + (-a + c)(c + a)} \][/tex]

### Step 4: Simplify the Exponents

Each term inside the exponents can be expanded using the difference of squares formula [tex]\( (m+n)(m-n) = m^2 - n^2 \)[/tex]:

1. [tex]\((a + b)(a - b) = a^2 - b^2\)[/tex]
2. [tex]\((b - c)(b + c) = b^2 - c^2\)[/tex]
3. [tex]\((-a + c)(c + a) = c^2 - a^2\)[/tex]

So the entire exponent simplifies as:

[tex]\[ a^2 - b^2 + b^2 - c^2 + c^2 - a^2 \][/tex]

Notice that [tex]\(a^2 - a^2 + b^2 - b^2 + c^2 - c^2 = 0\)[/tex].

### Conclusion

Thus, the overall exponent is zero, meaning our multiplication results in:

[tex]\[ x^0 = 1 \][/tex]

And therefore, the simplified expression is:

[tex]\[ 1 \][/tex]

Final result:

[tex]\[ (x^{(-a + c)})^{c + a} \cdot (x^{a + b})^{a - b} \cdot (x^{b - c})^{b + c} = 1 \][/tex]