Subtract [tex]\left(5x^2 + 3\right) - \left(2x^2 + 4x - 12\right)[/tex].

A. [tex]3x^2 - 4x + 15[/tex]
B. [tex]3x^2 + 4x + 15[/tex]
C. [tex]3x^2 - 4x - 9[/tex]
D. [tex]3x^2 + 4x - 9[/tex]



Answer :

To subtract the polynomial [tex]\( (5x^2 + 3) \)[/tex] by the polynomial [tex]\( (2x^2 + 4x - 12) \)[/tex], follow these steps:

1. First, write down the expression for the subtraction of the two polynomials:
[tex]\[ (5x^2 + 3) - (2x^2 + 4x - 12) \][/tex]

2. Distribute the negative sign across the second polynomial:
[tex]\[ 5x^2 + 3 - 2x^2 - 4x + 12 \][/tex]

3. Combine like terms by grouping the [tex]\( x^2 \)[/tex] terms together, the [tex]\( x \)[/tex] terms together, and the constant terms together:
[tex]\[ (5x^2 - 2x^2) + (-4x) + (3 + 12) \][/tex]

4. Perform the arithmetic operations on the grouped terms:
[tex]\[ 3x^2 - 4x + 15 \][/tex]

Therefore, the simplified result of the subtraction is:
[tex]\[ 3x^2 - 4x + 15 \][/tex]

Among the given options, the correct answer is:
[tex]\[ 3x^2 - 4x + 15 \][/tex]