Add [tex]\left(3x^4 - 2x^3 + 1\right) + \left(12x^4 + x^2 - 11\right)[/tex].

A. [tex]15x^4 - x^3 - 10[/tex]

B. [tex]15x^4 - x^2 - 10[/tex]

C. [tex]15x^4 - 2x^3 + x^2 + 10[/tex]

D. [tex]15x^4 - 2x^3 + x^2 - 10[/tex]



Answer :

To solve the problem of adding the two polynomials [tex]\((3x^4 - 2x^3 + 1)\)[/tex] and [tex]\((12x^4 + x^2 - 11)\)[/tex], we will add the corresponding coefficients of like terms.

Here are the polynomials split into their individual terms:

1. The first polynomial is [tex]\(3x^4 - 2x^3 + 1\)[/tex]. This can be expressed in its expanded form with missing terms having coefficients of 0 for clarity:
[tex]\[ 3x^4 - 2x^3 + 0x^2 + 0x + 1 \][/tex]

2. The second polynomial is [tex]\(12x^4 + x^2 - 11\)[/tex]. This can also be expanded as:
[tex]\[ 12x^4 + 0x^3 + x^2 + 0x - 11 \][/tex]

Now, let's align the terms by their degrees and add the corresponding coefficients:

[tex]\[ \begin{array}{rcl} (3x^4 + 12x^4) & : & (3 + 12)x^4 = 15x^4 \\ (-2x^3 + 0x^3) & : & (-2 + 0)x^3 = -2x^3 \\ (0x^2 + x^2) & : & (0 + 1)x^2 = 1x^2 \\ (0x + 0x) & : & (0 + 0)x = 0x \\ (1 - 11) & : & (1 - 11) = -10 \\ \end{array} \][/tex]

Combining these results, we get the final polynomial:

[tex]\[ 15x^4 - 2x^3 + x^2 + 0x - 10 \][/tex]

Simplifying, we drop the [tex]\(0x\)[/tex] term since it does not affect the polynomial:

[tex]\[ 15x^4 - 2x^3 + x^2 - 10 \][/tex]

Therefore, the result of adding the given polynomials is:

[tex]\[ \boxed{15x^4 - 2x^3 + x^2 - 10} \][/tex]