What is the range of the function in this table?

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
1 & 2 \\
\hline
2 & 4 \\
\hline
3 & 3 \\
\hline
4 & 2 \\
\hline
\end{tabular}
\][/tex]

A. [tex]$(1,2)^n$[/tex]
B. [tex]$\{2,3,4\}$[/tex]
C. [tex]$\{1,2,3,4\}$[/tex]
D. [tex]$(1,2),(2,4),(3,3),(4,2)$[/tex]



Answer :

To determine the range of the function, we need to examine the y-values in the table. The table of the function is provided as follows:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 2 \\ \hline 2 & 4 \\ \hline 3 & 3 \\ \hline 4 & 2 \\ \hline \end{array} \][/tex]

The y-values from the table are: 2, 4, 3, and 2.

The range of a function is the set of all unique y-values that the function can output. To find this set, we need to list all distinct y-values from the table:

- From [tex]\(x = 1\)[/tex], [tex]\(y = 2\)[/tex]
- From [tex]\(x = 2\)[/tex], [tex]\(y = 4\)[/tex]
- From [tex]\(x = 3\)[/tex], [tex]\(y = 3\)[/tex]
- From [tex]\(x = 4\)[/tex], [tex]\(y = 2\)[/tex]

The unique y-values from the table are 2, 4, and 3.

Hence, the range of the function, which is the set of all unique y-values, is [tex]\(\{2, 3, 4\}\)[/tex].

Therefore, the correct answer is:
B. [tex]\(\{2, 3, 4\}\)[/tex]