What is the domain of the function in this table?

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
3 & 4 \\
\hline
4 & 4 \\
\hline
5 & 2 \\
\hline
6 & 5 \\
\hline
\end{tabular}

A. [tex]$\{3,4,5,6\}$[/tex]

B. [tex]$(3,4),(4,4),(5,2),(6,5)$[/tex]

C. [tex]$(3,4)$[/tex]

D. [tex]$\{2,4,5\}$[/tex]



Answer :

To determine the domain of a function from a given table, we need to identify all the possible values of [tex]\( x \)[/tex] for which the function is defined. The domain consists of the set of input values (or [tex]\( x \)[/tex]-values) shown in the table.

For the table provided:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline 3 & 4 \\ \hline 4 & 4 \\ \hline 5 & 2 \\ \hline 6 & 5 \\ \hline \end{tabular} \][/tex]

We see that the [tex]\( x \)[/tex]-values available are [tex]\( 3, 4, 5, \)[/tex] and [tex]\( 6 \)[/tex].

Thus, the domain of the function is the set of all these [tex]\( x \)[/tex]-values.

So, the domain of the function is:
[tex]\[ \{3, 4, 5, 6\} \][/tex]

The correct answer is:
[tex]\[ \text{A. } \{3, 4, 5, 6\} \][/tex]