Simplify to create an equivalent expression.

[tex]\[ -5(3p + 3) + 9(-7 + p) \][/tex]

Choose one answer:

A. [tex]\(-5p - 78\)[/tex]

B. [tex]\(-6p - 78\)[/tex]

C. [tex]\(-6p - 48\)[/tex]

D. [tex]\(-6p + 78\)[/tex]



Answer :

Sure! Let's break down the expression step-by-step to simplify it.

The original expression is:
[tex]\[ -5(3p + 3) + 9(-7 + p) \][/tex]

Step 1: Distribute the constants inside the parentheses.

Distribute [tex]\(-5\)[/tex] through [tex]\((3p + 3)\)[/tex]:
[tex]\[ -5 \cdot 3p = -15p \][/tex]
[tex]\[ -5 \cdot 3 = -15 \][/tex]

Similarly, distribute [tex]\(9\)[/tex] through [tex]\((-7 + p)\)[/tex]:
[tex]\[ 9 \cdot (-7) = -63 \][/tex]
[tex]\[ 9 \cdot p = 9p \][/tex]

So, after distributing, the expression becomes:
[tex]\[ -15p - 15 - 63 + 9p \][/tex]

Step 2: Combine like terms.

Combine the [tex]\(p\)[/tex] terms:
[tex]\[ -15p + 9p = -6p \][/tex]

Combine the constant terms:
[tex]\[ -15 - 63 = -78 \][/tex]

Putting it all together, we get the simplified expression:
[tex]\[ -6p - 78 \][/tex]

So, the equivalent simplified expression is:
[tex]\[ \boxed{-6p - 78} \][/tex]

Therefore, the correct answer is:
(B) [tex]\(-6p - 78\)[/tex]