Simplify the following expression:

[tex]\[ \left[ \frac{-8}{9} + \frac{2}{9} \right] \div \left[ \frac{6}{10} - \frac{5}{2} \right] \][/tex]



Answer :

To solve the expression [tex]\(\left[\frac{-8}{9}+\frac{2}{9}\right] \div\left[\frac{6}{10}-\frac{5}{2}\right]\)[/tex], let's break it down into two parts: the numerator and the denominator.

#### Step-by-Step Solution:

1. Calculate the Numerator:

The numerator is [tex]\(\frac{-8}{9} + \frac{2}{9}\)[/tex].

Since these two fractions have a common denominator, we can combine them directly:

[tex]\[ \frac{-8}{9} + \frac{2}{9} = \frac{-8 + 2}{9} = \frac{-6}{9} \][/tex]

Simplify [tex]\(\frac{-6}{9}\)[/tex]:

[tex]\[ \frac{-6}{9} = \frac{-2}{3} \][/tex]

Converting to decimal form:

[tex]\[ \frac{-2}{3} \approx -0.6666666666666666 \][/tex]

2. Calculate the Denominator:

The denominator is [tex]\(\frac{6}{10} - \frac{5}{2}\)[/tex].

First, convert [tex]\(\frac{5}{2}\)[/tex] to have a common denominator with [tex]\(\frac{6}{10}\)[/tex]. The common denominator here is 10.

[tex]\(\frac{5}{2}\)[/tex] can be written as:

[tex]\[ \frac{5}{2} = \frac{5 \times 5}{2 \times 5} = \frac{25}{10} \][/tex]

Now, we subtract:

[tex]\[ \frac{6}{10} - \frac{25}{10} = \frac{6 - 25}{10} = \frac{-19}{10} \][/tex]

Converting to decimal form:

[tex]\[ \frac{-19}{10} = -1.9 \][/tex]

3. Divide the Results:

Now, we divide the result of the numerator by the result of the denominator:

[tex]\[ \frac{\frac{-2}{3}}{\frac{-19}{10}} = \frac{-0.6666666666666666}{-1.9} \][/tex]

This simplifies to:

[tex]\[ \frac{-0.6666666666666666}{-1.9} \approx 0.3508771929824561 \][/tex]

Therefore, the final result of [tex]\(\left[\frac{-8}{9}+\frac{2}{9}\right] \div\left[\frac{6}{10}-\frac{5}{2}\right]\)[/tex] is approximately [tex]\(0.3508771929824561\)[/tex].