Solve the equation and justify each step. Show all your work.

[tex]\[ 25 - 3m = 40 \][/tex]

\begin{tabular}{|l|l|}
\hline
\textbf{Steps} & \textbf{Justification} \\
\hline
1. Subtract 25 from both sides: & [tex]$25 - 25 - 3m = 40 - 25$[/tex] \\
\hline
2. Simplify: & [tex]$-3m = 15$[/tex] \\
\hline
3. Divide both sides by -3: & [tex]$\frac{-3m}{-3} = \frac{15}{-3}$[/tex] \\
\hline
4. Simplify: & [tex]$m = -5$[/tex] \\
\hline
\end{tabular}



Answer :

To solve the equation [tex]\( 25 - 3m = 40 \)[/tex], follow these steps:

[tex]\[ \begin{tabular}{|l|l|} \hline \textbf{STEPS} & \textbf{JUSTIFICATION} \\ \hline 1. \( 25 - 3m - 25 = 40 - 25 \) & Subtract 25 from both sides. This is to isolate the term containing the variable \( m \). \\ \hline 2. \( -3m = 15 \) & Simplify both sides of the equation by performing the subtraction. \\ \hline 3. \( \frac{-3m}{-3} = \frac{15}{-3} \) & Divide both sides of the equation by \(-3\). This step isolates the variable \( m \). \\ \hline 4. \( m = -5 \) & Simplify the right-hand side to solve for \( m \). \\ \hline \end{tabular} \][/tex]

Therefore, the solution to the equation [tex]\( 25 - 3m = 40 \)[/tex] is [tex]\( m = -5 \)[/tex].