If [tex]$f(x)=\frac{3 x}{5}+3$[/tex], which of the following is the inverse of [tex]f(x)[/tex]?

A. [tex]f^{-1}(x)=\frac{3(x-3)}{5}[/tex]
B. [tex]f^{-1}(x)=\frac{5(x+3)}{3}[/tex]
C. [tex]f^{-1}(x)=\frac{5(x-3)}{3}[/tex]
D. [tex]f^{-1}(x)=\frac{3(x+3)}{5}[/tex]



Answer :

To find the inverse of the function [tex]\( f(x)=\frac{3x}{5}+3 \)[/tex], we need to follow these steps:

1. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = \frac{3x}{5} + 3 \][/tex]

2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to find the inverse function. The goal is to solve for [tex]\( y \)[/tex]:
[tex]\[ x = \frac{3y}{5} + 3 \][/tex]

3. Isolate [tex]\( y \)[/tex]. Start by subtracting 3 from both sides to isolate the term containing [tex]\( y \)[/tex]:
[tex]\[ x - 3 = \frac{3y}{5} \][/tex]

4. Multiply both sides by 5 to eliminate the fraction:
[tex]\[ 5(x - 3) = 3y \][/tex]

5. Solve for [tex]\( y \)[/tex] by dividing both sides by 3:
[tex]\[ y = \frac{5(x - 3)}{3} \][/tex]

Thus, the inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ f^{-1}(x) = \frac{5(x - 3)}{3} \][/tex]

Therefore, the correct option is:

C. [tex]\( f^{-1}(x) = \frac{5(x - 3)}{3} \)[/tex]