Answer: BADC
Step-by-step explanation:
By knowing the sine and cosine addition and subtraction formulas could find which one matches with which. Here are the 4:
[tex]\sin(a + b) = \sin a\cos b + \cos a\sin b\\\sin(a - b) = \sin a\cos b - \cos a\sin b\\\cos(a + b) = \cos a\cos b - \sin a\sin b\\\cos(a - b) = \cos a\cos b + \sin a\sin b[/tex]
From these, we can see the following matchups:
(1) B: [tex]\cos\left(\frac{\pi }{2} - \frac{\pi }{3} \right)[/tex]
(2) A: [tex]\cos\left(\frac{\pi }{2} +\frac{\pi }{3} \right)[/tex]
(3) D: [tex]\sin\left(\frac{\pi }{2} -\frac{\pi }{3} \right)[/tex]
(4) C: [tex]\sin\left(\frac{\pi }{2} +\frac{\pi }{3} \right)[/tex]
Hope this helps! Please reply if you have any further questions.