EXAM QUESTIONS (Answers pp. 195-197)

Question 1 (20 points)

Simplify the expression: [tex]\frac{12 a^4 b}{3 a^3 b^2}[/tex]

A. [tex]4 a b[/tex]
B. [tex]4(a b)^2[/tex]
C. [tex]4 a b^3[/tex]
D. [tex]\frac{4 a}{b}[/tex]
E. [tex]\frac{4 b}{a}[/tex]

Question 2 (20 points)

[tex]K^{-4}[/tex] can be expressed as:

A. [tex]\frac{K}{4}[/tex]
B. [tex]K^{\frac{1}{4}}[/tex]
C. [tex]\frac{4}{K}[/tex]
D. [tex]\frac{1}{K^4}[/tex]
E. [tex]-K^4[/tex]



Answer :

Let's go through the step-by-step solutions for both questions.

## QUESTION 1

Simplify the expression: [tex]\(\frac{12 a^4 b}{3 a^3 b^2}\)[/tex]

1. First, simplify the numerical coefficients:
[tex]\[ \frac{12}{3} = 4 \][/tex]
2. Simplify the [tex]\(a\)[/tex] terms:
[tex]\[ \frac{a^4}{a^3} = a^{4-3} = a^1 = a \][/tex]
3. Simplify the [tex]\(b\)[/tex] terms:
[tex]\[ \frac{b}{b^2} = b^{1-2} = b^{-1} = \frac{1}{b} \][/tex]

Combining these results, we get:
[tex]\[ 4 \cdot a \cdot \frac{1}{b} = \frac{4a}{b} \][/tex]

So, the simplified expression [tex]\(\frac{12 a^4 b}{3 a^3 b^2}\)[/tex] is [tex]\(\boxed{\frac{4a}{b}}\)[/tex].

Correct answer: D. [tex]\(\frac{4 a}{b}\)[/tex]

## QUESTION 2

Simplify [tex]\(K^{-4}\)[/tex]

The property of exponents we use here is that [tex]\(x^{-n} = \frac{1}{x^n}\)[/tex].

Applying this property:
[tex]\[ K^{-4} = \frac{1}{K^4} \][/tex]

So, [tex]\(K^{-4}\)[/tex] can be expressed as [tex]\(\boxed{\frac{1}{K^4}}\)[/tex].

Correct answer: D. [tex]\(\frac{1}{K^4}\)[/tex]

By following the steps methodically, we arrive at the correct answers for both questions.