For the grand movie premiere, how many gallons of special drink are needed if the recipe requires [tex]$4 \frac{1}{2}$[/tex] gallons of sparkling soda, 1 gallon of berry extract, [tex]$2 \frac{3}{4}$[/tex] gallons of frosted lemon fizz, and [tex][tex]$\frac{1}{8}$[/tex][/tex] gallon of crushed starfruit?

Select one:

A. [tex]$9 \frac{1}{2}$[/tex] gallons
B. [tex]$8 \frac{3}{8}$[/tex] gallons
C. [tex][tex]$7 \frac{1}{4}$[/tex][/tex] gallons
D. [tex]$10 \frac{1}{2}$[/tex] gallons



Answer :

Let's solve the problem step by step to find out the total amount of special drink needed for the grand movie premiere.

1. Convert mixed numbers to improper fractions if necessary:
- Sparkling soda: [tex]\( 4 \frac{1}{2} \)[/tex] gallons
- Berry extract: 1 gallon
- Frosted lemon fizz: [tex]\( 2 \frac{3}{4} \)[/tex] gallons
- Crushed starfruit: [tex]\( \frac{1}{8} \)[/tex] gallon

2. First, convert the mixed numbers into improper fractions:
- [tex]\( 4 \frac{1}{2} = 4 + \frac{1}{2} = \frac{8}{2} + \frac{1}{2} = \frac{9}{2} \)[/tex]
- [tex]\( 2 \frac{3}{4} = 2 + \frac{3}{4} = \frac{8}{4} + \frac{3}{4} = \frac{11}{4} \)[/tex]

3. Now, add up all the quantities:
- Sparkling soda: [tex]\( \frac{9}{2} \)[/tex] gallons
- Berry extract: 1 gallon
- Frosted lemon fizz: [tex]\( \frac{11}{4} \)[/tex] gallons
- Crushed starfruit: [tex]\( \frac{1}{8} \)[/tex] gallon

We need to get a common denominator to add these fractions:
- For [tex]\( \frac{9}{2} \)[/tex]: Multiply by 4: [tex]\( \frac{9}{2} \times \frac{4}{4} = \frac{36}{8} \)[/tex]
- For 1 gallon: Multiply by 8: [tex]\( 1 \times \frac{8}{8} = \frac{8}{8} \)[/tex]
- For [tex]\( \frac{11}{4} \)[/tex]: Multiply by 2: [tex]\( \frac{11}{4} \times \frac{2}{2} = \frac{22}{8} \)[/tex]
- For [tex]\( \frac{1}{8} \)[/tex]: Already has the denominator 8

4. Add these fractions:
- [tex]\( \frac{36}{8} + \frac{8}{8} + \frac{22}{8} + \frac{1}{8} \)[/tex]

5. Combine the numerators over the common denominator:
- [tex]\( \frac{36 + 8 + 22 + 1}{8} = \frac{67}{8} \)[/tex]

6. Convert the improper fraction back to a mixed number:
- [tex]\( \frac{67}{8} = 8 \frac{3}{8} \)[/tex]

Thus, the total amount of special drink needed is [tex]\( 8 \frac{3}{8} \)[/tex] gallons.

Therefore, the correct choice is:
[tex]\( 8 \frac{3}{8} \)[/tex] gallons