A student sets up the following equation to solve a problem in solution stoichiometry. (The ? stands for a number the student is going to calculate.) Enter the units of the student's answer.

[tex]\[ \frac{(0.42 \, \text{L}) \left( \frac{1 \, \text{mL}}{10^{-3} \, \text{L}} \right) \left( 2.16 \, \frac{\text{g}}{\text{mL}} \right)}{\left( 37.39 \, \frac{\text{g}}{\text{mol}} \right)} = ? \][/tex]

[tex]\[ \boxed{\text{units}} \][/tex]



Answer :

To solve this problem, follow these detailed steps:

1. Understand the Given Values:
- Volume: [tex]\( 0.42 \)[/tex] liters (L)
- Conversion Factor: [tex]\( \frac{1 \, \text{mL}}{10^{-3} \, \text{L}} \)[/tex]
- Density: [tex]\( 2.16 \, \frac{\text{g}}{\text{mL}} \)[/tex]
- Molar Mass: [tex]\( 37.39 \, \frac{\text{g}}{\text{mol}} \)[/tex]

2. Convert Volume from Liters to Milliliters:
- The conversion factor [tex]\( \frac{1 \, \text{mL}}{10^{-3} \, \text{L}} \)[/tex] means that [tex]\( 1 \, \text{L} = 1000 \, \text{mL} \)[/tex].
- Therefore, [tex]\( 0.42 \, \text{L} = 0.42 \times 1000 \, \text{mL} = 420 \, \text{mL} \)[/tex].

3. Calculate the Mass in Grams:
- Using the density [tex]\( 2.16 \, \frac{\text{g}}{\text{mL}} \)[/tex]:
[tex]\[ 420 \, \text{mL} \times 2.16 \, \frac{\text{g}}{\text{mL}} = 907.2 \, \text{g} \][/tex]

4. Calculate the Number of Moles:
- Using the molar mass [tex]\( 37.39 \, \frac{\text{g}}{\text{mol}} \)[/tex]:
[tex]\[ \frac{907.2 \, \text{g}}{37.39 \, \frac{\text{g}}{\text{mol}}} = 24.263171971115273 \, \text{mol} \][/tex]

5. Determine the Units of the Student's Answer:
- The final step involves understanding the units:
- Volume converted to mass is in grams (g).
- Mass converted to moles is in moles (mol).

Thus, the unit of the student's answer is [tex]\( \boxed{\text{mol}} \)[/tex].