Answer :

Let's solve the limit step by step:

Given expression:
[tex]\[ \lim_{x \rightarrow \infty} \sqrt{x}(\sqrt{x} - \sqrt{x} - a) \][/tex]

First, simplify the expression inside the parenthesis:
[tex]\[ \sqrt{x} - \sqrt{x} - a = 0 - a = -a \][/tex]

Now, substitute this back into the original expression:
[tex]\[ \lim_{x \rightarrow \infty} \sqrt{x}(-a) \][/tex]

This simplifies to:
[tex]\[ \lim_{x \rightarrow \infty} -a \sqrt{x} \][/tex]

Next, analyze the behavior of [tex]\(\sqrt{x}\)[/tex] as [tex]\(x\)[/tex] approaches infinity. The square root of [tex]\(x\)[/tex], or [tex]\(\sqrt{x}\)[/tex], also approaches infinity as [tex]\(x\)[/tex] becomes infinitely large.

Therefore:
[tex]\[ \lim_{x \rightarrow \infty} -a \sqrt{x} \][/tex]

Given that [tex]\(a\)[/tex] is a non-zero constant, [tex]\( -a \sqrt{x} \)[/tex] will grow without bound in the negative direction because it is being multiplied by [tex]\(-a\)[/tex], which introduces a negative sign.

As a result, the expression:
[tex]\[ \lim_{x \rightarrow \infty} -a \sqrt{x} \][/tex]

approaches [tex]\(-\infty\)[/tex].

Therefore:
[tex]\[ \lim_{x \rightarrow \infty} \sqrt{x}(\sqrt{x} - \sqrt{x} - a) = -\infty \][/tex]

So, the final answer is:
[tex]\[ -\infty \][/tex]