Here is the reformatted and corrected text:

---

Solve the following equations:

1. [tex]\(\frac{3}{3} + \frac{1}{4}\)[/tex]
2. [tex]\(2 \frac{4}{5} + \frac{5}{7}\)[/tex]
3. [tex]\(1 \frac{2}{9} \cdot 6 \frac{1}{2}\)[/tex]
4. [tex]\(45 \frac{2}{5} + 3 \frac{1}{2}\)[/tex]
5. [tex]\(1 \frac{1}{2} + 5 \frac{3}{4} + 1 \frac{6}{8}\)[/tex]
6. [tex]\(6 \frac{5}{9} - \frac{5}{12}\)[/tex]
7. [tex]\(\frac{7}{8} - \frac{5}{6}\)[/tex]
8. [tex]\(21 \frac{3}{6} - 12 \frac{1}{3}\)[/tex]
9. [tex]\(17 \frac{1}{7} - 13 \frac{1}{3}\)[/tex]
10. [tex]\(22 \frac{3}{12} - 16\)[/tex]

---

This reformatted text maintains clarity and readability while preserving the mathematical content.



Answer :

Let's carefully break down and solve each part of the question using the numerical values that we've obtained.

1. Converting mixed fractions to improper fractions and performing the arithmetic operations:
- First, let's convert the mixed fraction [tex]\(2 \frac{4}{5}\)[/tex] to an improper fraction:
[tex]\[ 2 \frac{4}{5} = 2 + \frac{4}{5} = 2 + 0.8 = 2.8 \][/tex]
- Then, convert the simple fraction [tex]\(\frac{5}{7}\)[/tex] to a decimal:
[tex]\[ \frac{5}{7} \approx 0.7142857142857143 \][/tex]
- Adding these two values together:
[tex]\[ 2.8 + 0.7142857142857143 \approx 3.5142857142857142 \][/tex]

2. Calculating the sum of mixed fractions and simple fractions:
- Next, we consider the mixed fraction [tex]\(3 \cdot 1 \frac{2}{9}\)[/tex]:
[tex]\[ 1 \frac{2}{9} = 1 + \frac{2}{9} = 1 + 0.2222222222 \approx 1.2222222222 \][/tex]
Therefore:
[tex]\[ 3 \cdot 1.2222222222 \approx 3.666666666666667 \][/tex]
- Then, the mixed fraction [tex]\(6 \frac{1}{2}\)[/tex]:
[tex]\[ 6 \frac{1}{2} = 6 + \frac{1}{2} = 6 + 0.5 = 6.5 \][/tex]

3. Combine all the results:
- Adding the three components:
- The result of [tex]\( 2 \frac{4}{5} + \frac{5}{7} \)[/tex] is [tex]\( 3.5142857142857142 \)[/tex]
- The result of [tex]\( 3 \cdot (1 \frac{2}{9}) \)[/tex] is [tex]\( 3.666666666666667 \)[/tex]
- Finally adding [tex]\(6 \frac{1}{2}\)[/tex] which is [tex]\( 6.5 \)[/tex]

- Summing these three values together:
[tex]\[ 3.5142857142857142 + 3.666666666666667 + 6.5 \approx 13.68095238095238 \][/tex]

In summary, let's present this step-by-step solution systematically:

- Convert [tex]\( 2 \frac{4}{5} \)[/tex] to [tex]\(2.8\)[/tex].
- Evaluate [tex]\(\frac{5}{7} \approx 0.7142857142857143\)[/tex].
- Sum of first calculation:
[tex]\[ 2.8 + 0.7142857142857143 \approx 3.5142857142857142 \][/tex]

- Convert [tex]\( 3 \cdot 1 \frac{2}{9} \)[/tex] to:
[tex]\[ 1 \frac{2}{9} \approx 1.22222222 \quad \text{thus} \quad 3 \times 1.22222222 \approx 3.666666666666667 \][/tex]

- Convert [tex]\(6 \frac{1}{2}\)[/tex] to [tex]\(6.5\)[/tex].

- Total sum:
[tex]\[ 3.5142857142857142 + 3.666666666666667 + 6.5 = 13.68095238095238 \][/tex]

Thus, the final result is approximately [tex]\( 13.68095238095238 \)[/tex].