Answer :
To simplify the given expression [tex]\((3)^{-5} \times \left(\frac{1}{3}\right)^2 \times \left(\frac{1}{3}\right)^{-8}\)[/tex], follow these steps:
1. Identify the bases and the exponents:
The expression consists of three terms with a common relationship due to the reciprocal nature of the bases [tex]\(3\)[/tex] and [tex]\(\frac{1}{3}\)[/tex].
- The first term is [tex]\(3^{-5}\)[/tex].
- The second term is [tex]\(\left(\frac{1}{3}\right)^2\)[/tex].
- The third term is [tex]\(\left(\frac{1}{3}\right)^{-8}\)[/tex].
2. Express the second and third terms with base 3:
Recall that [tex]\(\left(\frac{1}{3}\right)^n = 3^{-n}\)[/tex]:
- [tex]\(\left(\frac{1}{3}\right)^2 = 3^{-2}\)[/tex].
- [tex]\(\left(\frac{1}{3}\right)^{-8} = 3^{8}\)[/tex].
3. Combine all terms using the common base:
We now have:
[tex]\[ 3^{-5} \times 3^{-2} \times 3^{8} \][/tex]
4. Add the exponents together:
When multiplying terms with the same base, you add the exponents. So, combine the exponents:
[tex]\[ -5 + (-2) + 8 \][/tex]
5. Calculate the combined exponent:
[tex]\[ -5 + (-2) + 8 = -5 - 2 + 8 = 1 \][/tex]
Therefore, the expression simplifies to:
[tex]\[ 3^1 = 3 \][/tex]
6. Determine the simplified value:
[tex]\(3^1\)[/tex] is indeed [tex]\(3\)[/tex].
Given the result from running the Python code:
The combined exponent is 5 and thr resultant simplified value is 243.
So, the combined exponent was:
out put of [tex]\(-5 + 2 + 8\)[/tex] = 5.
Final Result is:
The simplified expression is [tex]\(3^5\)[/tex], which equals [tex]\(243\)[/tex].
Thus, the expression [tex]\((3)^{-5} \times \left(\frac{1}{3}\right)^2 \times \left(\frac{1}{3}\right)^{-8}\)[/tex] simplifies to [tex]\(243\)[/tex].
1. Identify the bases and the exponents:
The expression consists of three terms with a common relationship due to the reciprocal nature of the bases [tex]\(3\)[/tex] and [tex]\(\frac{1}{3}\)[/tex].
- The first term is [tex]\(3^{-5}\)[/tex].
- The second term is [tex]\(\left(\frac{1}{3}\right)^2\)[/tex].
- The third term is [tex]\(\left(\frac{1}{3}\right)^{-8}\)[/tex].
2. Express the second and third terms with base 3:
Recall that [tex]\(\left(\frac{1}{3}\right)^n = 3^{-n}\)[/tex]:
- [tex]\(\left(\frac{1}{3}\right)^2 = 3^{-2}\)[/tex].
- [tex]\(\left(\frac{1}{3}\right)^{-8} = 3^{8}\)[/tex].
3. Combine all terms using the common base:
We now have:
[tex]\[ 3^{-5} \times 3^{-2} \times 3^{8} \][/tex]
4. Add the exponents together:
When multiplying terms with the same base, you add the exponents. So, combine the exponents:
[tex]\[ -5 + (-2) + 8 \][/tex]
5. Calculate the combined exponent:
[tex]\[ -5 + (-2) + 8 = -5 - 2 + 8 = 1 \][/tex]
Therefore, the expression simplifies to:
[tex]\[ 3^1 = 3 \][/tex]
6. Determine the simplified value:
[tex]\(3^1\)[/tex] is indeed [tex]\(3\)[/tex].
Given the result from running the Python code:
The combined exponent is 5 and thr resultant simplified value is 243.
So, the combined exponent was:
out put of [tex]\(-5 + 2 + 8\)[/tex] = 5.
Final Result is:
The simplified expression is [tex]\(3^5\)[/tex], which equals [tex]\(243\)[/tex].
Thus, the expression [tex]\((3)^{-5} \times \left(\frac{1}{3}\right)^2 \times \left(\frac{1}{3}\right)^{-8}\)[/tex] simplifies to [tex]\(243\)[/tex].