Rewrite the given expression by fixing the formatting and checking for any mistakes in the mathematical expression. The term [tex]\frac{C}{(3x-5)^1}[/tex] is incorrect because it duplicates the term [tex]\frac{B}{(3x-5)}[/tex]. Instead, the term should be [tex]\frac{C}{(3x-5)^2}[/tex] to properly decompose the fraction.

The corrected task is as follows:

Solve the partial fraction decomposition for:
[tex]\[ \frac{2x-1}{(x+1)(3x-5)^2} = \frac{A}{x+1} + \frac{B}{3x-5} + \frac{C}{(3x-5)^2} \][/tex]



Answer :

To solve the equation

[tex]\[ \frac{2x - 1}{(x + 1)(3x - 5)^2} = \frac{A}{x + 1} + \frac{B}{3x - 5} + \frac{C}{(3x - 5)^2} \][/tex]

we need to decompose the left side into a sum of partial fractions. Follow these steps:

### Step 1: Set Up the Partial Fractions
Firstly, you suppose that:

[tex]\[ \frac{2x - 1}{(x + 1)(3x - 5)^2} = \frac{A}{x + 1} + \frac{B}{3x - 5} + \frac{C}{(3x - 5)^2} \][/tex]

### Step 2: Clear the Denominators
Multiply both sides by the common denominator [tex]\((x + 1)(3x - 5)^2\)[/tex] to clear the denominators:

[tex]\[ 2x - 1 = A(3x - 5)^2 + B(x + 1)(3x - 5) + C(x + 1) \][/tex]

### Step 3: Expand and Combine Like Terms
Expand the right-hand side:

1. Expand [tex]\(A(3x - 5)^2\)[/tex]:
[tex]\[ A(3x - 5)^2 = A(9x^2 - 30x + 25) = 9Ax^2 - 30Ax + 25A \][/tex]

2. Expand [tex]\(B(x + 1)(3x - 5)\)[/tex]:
[tex]\[ B(x + 1)(3x - 5) = B(3x^2 - 5x + 3x - 5) = B(3x^2 - 2x - 5) = 3Bx^2 - 2Bx - 5B \][/tex]

3. Expand [tex]\(C(x + 1)\)[/tex]:
[tex]\[ C(x + 1) = Cx + C \][/tex]

So, combining all these terms:

[tex]\[ 2x - 1 = (9A + 3B)x^2 + (-30A - 2B + C)x + (25A - 5B + C) \][/tex]

### Step 4: Equate Coefficients
Now, equate the coefficients of [tex]\(x^2\)[/tex], [tex]\(x\)[/tex], and the constant terms on both sides:

#### Coefficient of [tex]\(x^2\)[/tex]:
[tex]\[ 0 = 9A + 3B \][/tex]

#### Coefficient of [tex]\(x\)[/tex]:
[tex]\[ 2 = -30A - 2B + C \][/tex]

#### Constant term:
[tex]\[ -1 = 25A - 5B + C \][/tex]

### Step 5: Solve the System of Equations
Solve the system of linear equations:

1. [tex]\(9A + 3B = 0\)[/tex]: This simplifies to [tex]\(3A + B = 0\)[/tex]

2. [tex]\( -30A - 2B + C = 2\)[/tex]

3. [tex]\(25A - 5B + C = -1\)[/tex]

First, from [tex]\(3A + B = 0\)[/tex]:

[tex]\[ B = -3A \][/tex]

Substitute [tex]\(B = -3A\)[/tex] into the second and third equations:

For [tex]\( -30A - 2B + C = 2\)[/tex]:

[tex]\[ -30A - 2(-3A) + C = 2\\ -30A + 6A + C = 2\\ -24A + C = 2\\ C = 2 + 24A \][/tex]

For [tex]\( 25A - 5B + C = -1\)[/tex]:

[tex]\[ 25A - 5(-3A) + C = -1\\ 25A + 15A + C = -1\\ 40A + C = -1\\ C = -1 - 40A \][/tex]

Now, equate the two expressions for [tex]\(C\)[/tex]:

[tex]\[ 2 + 24A = -1 - 40A \][/tex]

Solve for [tex]\(A\)[/tex]:

[tex]\[ 2 + 24A = -1 - 40A\\ 64A = -3\\ A = -\frac{3}{64} \][/tex]

Since [tex]\(B = -3A\)[/tex]:

[tex]\[ B = -3 \left( -\frac{3}{64} \right) = \frac{9}{64} \][/tex]

And for [tex]\(C\)[/tex]:

[tex]\[ C = 2 + 24 \left( -\frac{3}{64} \right)\\ C = 2 - \frac{72}{64}\\ C = 2 - \frac{9}{8}\\ C = \frac{7}{8} \][/tex]

### Conclusion
The coefficients are:

[tex]\[ A = -\frac{3}{64}, \quad B = \frac{9}{64}, \quad C = \frac{7}{8} \][/tex]

So, the partial fraction decomposition is:

[tex]\[ \frac{2x - 1}{(x + 1)(3x - 5)^2} = \frac{-\frac{3}{64}}{x + 1} + \frac{\frac{9}{64}}{3x - 5} + \frac{\frac{7}{8}}{(3x - 5)^2} \][/tex]