The straight line [tex]L[/tex] has equation [tex]x - y = 3[/tex].

The curve [tex]C[/tex] has equation [tex]3x^2 - y^2 + xy = 9[/tex].

[tex]L[/tex] and [tex]C[/tex] intersect at the points [tex]P[/tex] and [tex]Q[/tex].

Show clear algebraic working.



Answer :

To find the points of intersection between the line [tex]\( L \)[/tex] and the curve [tex]\( C \)[/tex], we need to solve the system of equations formed by their equations. Here are the given equations:

1. The equation of the line [tex]\( L \)[/tex]:
[tex]\[ x - y = 3 \][/tex]

2. The equation of the curve [tex]\( C \)[/tex]:
[tex]\[ 3x^2 - y^2 + xy = 9 \][/tex]

We will solve these equations simultaneously to find the points where the line and the curve intersect.

### Step 1: Express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] using the line equation
From the equation of the line [tex]\( x - y = 3 \)[/tex]:
[tex]\[ y = x - 3 \][/tex]

### Step 2: Substitute [tex]\( y = x - 3 \)[/tex] into the equation of the curve
Substitute [tex]\( y = x - 3 \)[/tex] into [tex]\( 3x^2 - y^2 + xy = 9 \)[/tex]:
[tex]\[ 3x^2 - (x - 3)^2 + x(x - 3) = 9 \][/tex]

### Step 3: Expand and simplify the equation
First, expand [tex]\( (x - 3)^2 \)[/tex]:
[tex]\[ (x - 3)^2 = x^2 - 6x + 9 \][/tex]

Now substitute back:
[tex]\[ 3x^2 - (x^2 - 6x + 9) + x(x - 3) = 9 \][/tex]

Simplify the expression:
[tex]\[ 3x^2 - x^2 + 6x - 9 + x^2 - 3x = 9 \][/tex]
[tex]\[ 3x^2 - x^2 + x^2 + 6x - 3x - 9 = 9 \][/tex]
[tex]\[ 3x^2 + 3x - 9 = 9 \][/tex]

### Step 4: Solve the quadratic equation
Combine like terms:
[tex]\[ 3x^2 + 3x - 18 = 0 \][/tex]

Divide the entire equation by 3:
[tex]\[ x^2 + x - 6 = 0 \][/tex]

To solve this quadratic equation, we can factor it:
[tex]\[ (x + 3)(x - 2) = 0 \][/tex]

This gives the solutions:
[tex]\[ x = -3 \quad \text{or} \quad x = 2 \][/tex]

### Step 5: Find the corresponding [tex]\( y \)[/tex] values
Using the line equation [tex]\( y = x - 3 \)[/tex]:
- For [tex]\( x = -3 \)[/tex]:
[tex]\[ y = -3 - 3 = -6 \][/tex]
Thus, one point of intersection is [tex]\( (-3, -6) \)[/tex].

- For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = 2 - 3 = -1 \][/tex]
Thus, another point of intersection is [tex]\( (2, -1) \)[/tex].

### Conclusion
The points of intersection between the line [tex]\( L \)[/tex] and the curve [tex]\( C \)[/tex] are:
[tex]\[ (-3, -6) \quad \text{and} \quad (2, -1) \][/tex]

These are the points [tex]\( P \)[/tex] and [tex]\( Q \)[/tex].