Evaluate the following expression where [tex]$a=5, b=3, c=7, d=5$[/tex]:

[tex]\[ [c+7(d-3)]^2 \div 3 \][/tex]

(a) 147

(b) 148

(c) 149

(d) 150



Answer :

To evaluate the given expression [tex]\([c+7(d-3)]^2 \div 3\)[/tex] for the values [tex]\(a=5, b=3, c=7, d=5\)[/tex], follow these steps:

1. Simplify the Innermost Expression:
[tex]\[ d - 3 \][/tex]
Substitute [tex]\( d = 5 \)[/tex]:
[tex]\[ 5 - 3 = 2 \][/tex]

2. Multiply by 7:
[tex]\[ 7 \times (d - 3) = 7 \times 2 = 14 \][/tex]

3. Add [tex]\(c\)[/tex]:
[tex]\[ c + 7(d - 3) = 7 + 14 = 21 \][/tex]

4. Square the Result:
[tex]\[ [c + 7(d - 3)]^2 = 21^2 = 441 \][/tex]

5. Divide by 3:
[tex]\[ \frac{[c + 7(d - 3)]^2}{3} = \frac{441}{3} = 147 \][/tex]

So, the step-by-step evaluation shows that the final result of the given expression is:
[tex]\[ 147 \][/tex]

Therefore, the correct answer is [tex]\(\boxed{147}\)[/tex].