Answer :

Sure! Let's simplify the given expression step-by-step:

We are given:
[tex]\[ \frac{3^5 \times 3^7}{3^3 \times 3^4} \][/tex]

First, apply the properties of exponents. The property [tex]\(a^m \times a^n = a^{m+n}\)[/tex] allows us to combine the exponents in the numerator and the denominator:

For the numerator:
[tex]\[ 3^5 \times 3^7 = 3^{5+7} = 3^{12} \][/tex]

For the denominator:
[tex]\[ 3^3 \times 3^4 = 3^{3+4} = 3^7 \][/tex]

Next, we simplify the division of exponents. According to the property [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]:

[tex]\[ \frac{3^{12}}{3^7} = 3^{12-7} = 3^5 \][/tex]

So, the simplified form of the expression is:
[tex]\[ 3^5 \][/tex]

Thus, the final answer is:
[tex]\[ 3^5 \][/tex]