(3 points) Create a table of values for the function [tex]f(x)=\frac{e^x-1}{x}[/tex] and use the result to estimate the limit.

[tex]\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
x & -0.1 & -0.01 & -0.001 & 0.001 & 0.01 & 0.1 \\
\hline
f(x) & 0.9516 & 0.9950 & 0.9995 & 1.0005 & 1.0050 & 1.0517 \\
\hline
\end{array}
\][/tex]



Answer :

To estimate the limit [tex]\(\lim_{x \to 0} \frac{e^x - 1}{x}\)[/tex], we can create a table of values for the function [tex]\(f(x) = \frac{e^x - 1}{x}\)[/tex] at specific [tex]\(x\)[/tex] values that approach 0 from both the negative and positive sides.

Here are the [tex]\(x\)[/tex] values we will use and their corresponding [tex]\(f(x)\)[/tex] values:

[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline x & -0.1 & -0.01 & -0.001 & 0.001 & 0.01 & 0.1 \\ \hline f(x) & 0.9516 & 0.9950 & 0.9995 & 1.0005 & 1.0050 & 1.0517 \\ \hline \end{array} \][/tex]

### Step-by-Step Solution

1. Evaluate [tex]\(f(x)\)[/tex] at given [tex]\(x\)[/tex] values:

For [tex]\(x = -0.1\)[/tex]:
[tex]\[ f(-0.1) = 0.9516 \][/tex]

For [tex]\(x = -0.01\)[/tex]:
[tex]\[ f(-0.01) = 0.9950 \][/tex]

For [tex]\(x = -0.001\)[/tex]:
[tex]\[ f(-0.001) = 0.9995 \][/tex]

For [tex]\(x = 0.001\)[/tex]:
[tex]\[ f(0.001) = 1.0005 \][/tex]

For [tex]\(x = 0.01\)[/tex]:
[tex]\[ f(0.01) = 1.0050 \][/tex]

For [tex]\(x = 0.1\)[/tex]:
[tex]\[ f(0.1) = 1.0517 \][/tex]

2. Observe behavior of [tex]\(f(x)\)[/tex] as [tex]\(x\)[/tex] approaches 0:

When looking at the values, we see:

[tex]\[ \begin{array}{cc} x & f(x) \\ -0.1 & 0.9516 \\ -0.01 & 0.9950 \\ -0.001 & 0.9995 \\ 0.001 & 1.0005 \\ 0.01 & 1.0050 \\ 0.1 & 1.0517 \\ \end{array} \][/tex]

As [tex]\(x\)[/tex] gets closer to 0 (from either side), the function values [tex]\(f(x)\)[/tex] are getting closer to 1.

3. Estimate the limit:

Based on the values in the table, we observe that as [tex]\(x\)[/tex] approaches 0 from both the negative and positive sides, [tex]\(f(x)\)[/tex] approaches 1. Thus, the estimated limit is:

[tex]\[ \lim_{x \to 0} \frac{e^x - 1}{x} \approx 1 \][/tex]

### Conclusion

From the table of values, we can reasonably conclude that the limit as [tex]\(x\)[/tex] approaches 0 for the function [tex]\(\frac{e^x - 1}{x}\)[/tex] is 1. This method of using a table of values gives us a good approximation and visual evidence of the limit behavior.