Answered

Select the correct answer.

If [tex]u = (1 + i \sqrt{3})[/tex] and [tex]v = (1 - i \sqrt{3})[/tex], what is [tex]uv[/tex]?

A. 1
B. [tex]-4i[/tex]
C. 0
D. 4



Answer :

To solve for [tex]\( u \cdot v \)[/tex], where [tex]\( u = 1 + i \sqrt{3} \)[/tex] and [tex]\( v = 1 - i \sqrt{3} \)[/tex], follow these steps:

1. Express the problem:
We need to find the product of [tex]\( u \)[/tex] and [tex]\( v \)[/tex]:
[tex]\[ u \cdot v = (1 + i \sqrt{3})(1 - i \sqrt{3}) \][/tex]

2. Use the difference of squares formula:
[tex]\[ (a + b)(a - b) = a^2 - b^2 \][/tex]
Here, [tex]\( a = 1 \)[/tex] and [tex]\( b = i\sqrt{3} \)[/tex].

3. Apply the formula to our specific terms:
[tex]\[ (1 + i \sqrt{3})(1 - i \sqrt{3}) = 1^2 - (i \sqrt{3})^2 \][/tex]

4. Compute each term:
- [tex]\( 1^2 = 1 \)[/tex]
- [tex]\((i \sqrt{3})^2 = i^2 \cdot (\sqrt{3})^2 = -1 \cdot 3 = -3 \)[/tex] because [tex]\( i^2 = -1 \)[/tex].

5. Subtract the results:
[tex]\[ 1 - (-3) = 1 + 3 = 4 \][/tex]

Therefore, the product [tex]\( u \cdot v \)[/tex] is [tex]\( 4 \)[/tex]. Thus, the correct answer is:
[tex]\[ \boxed{4} \][/tex]