Answered

2. The third term of an arithmetic series is 70, and the sum of the first 10 terms of the series is 450.

(a) Calculate the common difference of the series. [4]

The sum of the first [tex]n[/tex] terms of the series is [tex]S_n[/tex].

Given that [tex]S_n \geq 350[/tex],

(b) Find the set of possible values of [tex]n[/tex]. [6]



Answer :

Let's solve the problem step-by-step.

### Part (a): Calculate the common difference of the series.

1. Define the terms:
- Let [tex]\( a \)[/tex] be the first term of the arithmetic series.
- Let [tex]\( d \)[/tex] be the common difference of the series.

2. Given information:
- The third term of the arithmetic series, [tex]\( a + 2d \)[/tex], is 70.
- The sum of the first 10 terms of the series, [tex]\( S_{10} \)[/tex], is 450.

3. Use the given information to set up equations:
- The third term equation is:
[tex]\[ a + 2d = 70 \][/tex]
- The formula for the sum of the first [tex]\( n \)[/tex] terms of an arithmetic series is:
[tex]\[ S_n = \frac{n}{2} \left(2a + (n-1)d\right) \][/tex]
Plugging in [tex]\( n = 10 \)[/tex] and [tex]\( S_{10} = 450 \)[/tex]:
[tex]\[ 450 = \frac{10}{2} \left(2a + 9d\right) \][/tex]
Simplify to get:
[tex]\[ 450 = 5 \left(2a + 9d\right) \][/tex]
[tex]\[ 2a + 9d = 90 \][/tex]

4. Solve the system of linear equations:
- We have two equations:
1. [tex]\( a + 2d = 70 \)[/tex]
2. [tex]\( 2a + 9d = 90 \)[/tex]

- Solve equation 1 for [tex]\( a \)[/tex]:
[tex]\[ a = 70 - 2d \][/tex]

- Substitute [tex]\( a = 70 - 2d \)[/tex] into equation 2:
[tex]\[ 2(70 - 2d) + 9d = 90 \][/tex]
Simplify:
[tex]\[ 140 - 4d + 9d = 90 \][/tex]
[tex]\[ 140 + 5d = 90 \][/tex]
[tex]\[ 5d = 90 - 140 \][/tex]
[tex]\[ 5d = -50 \][/tex]
[tex]\[ d = -10 \][/tex]

- Find [tex]\( a \)[/tex] using [tex]\( a = 70 - 2d \)[/tex]:
[tex]\[ a = 70 - 2(-10) \][/tex]
[tex]\[ a = 70 + 20 \][/tex]
[tex]\[ a = 90 \][/tex]

So, the first term [tex]\( a = 90 \)[/tex] and the common difference [tex]\( d = -10 \)[/tex].

### Part (b): Find the set of possible values of [tex]\( n \)[/tex] when [tex]\( S_n \geq 350 \)[/tex].

1. Given inequality:
[tex]\[ S_n = \frac{n}{2} \left(2a + (n-1)d\right) \geq 350 \][/tex]
Substitute [tex]\( a = 90 \)[/tex] and [tex]\( d = -10 \)[/tex] into the inequality:
[tex]\[ \frac{n}{2} \left(2(90) + (n-1)(-10)\right) \geq 350 \][/tex]
Simplify inside the parentheses:
[tex]\[ \frac{n}{2} \left(180 - 10(n-1)\right) \geq 350 \][/tex]
[tex]\[ \frac{n}{2} \left(180 - 10n + 10\right) \geq 350 \][/tex]
[tex]\[ \frac{n}{2} \left(190 - 10n\right) \geq 350 \][/tex]
[tex]\[ \frac{n}{2} \cdot 190 - 5n^2 \geq 350 \][/tex]
[tex]\[ 95n - 5n^2 \geq 350 \][/tex]

2. Rearrange the inequality:
[tex]\[ -5n^2 + 95n - 350 \geq 0 \][/tex]

3. Solve the quadratic inequality:
- First, solve the quadratic equation [tex]\( -5n^2 + 95n - 350 = 0 \)[/tex]:

Use the quadratic formula [tex]\( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ a = -5, \quad b = 95, \quad c = -350 \][/tex]
[tex]\[ n = \frac{-95 \pm \sqrt{95^2 - 4(-5)(-350)}}{2(-5)} \][/tex]
[tex]\[ n = \frac{-95 \pm \sqrt{9025 - 7000}}{-10} \][/tex]
[tex]\[ n = \frac{-95 \pm \sqrt{2025}}{-10} \][/tex]
[tex]\[ n = \frac{-95 \pm 45}{-10} \][/tex]

- Solving for [tex]\( n \)[/tex]:

Case 1:
[tex]\[ n = \frac{-95 + 45}{-10} = \frac{-50}{-10} = 5 \][/tex]

Case 2:
[tex]\[ n = \frac{-95 - 45}{-10} = \frac{-140}{-10} = 14 \][/tex]

4. Analyze the quadratic inequality:
- The quadratic expression [tex]\( -5n^2 + 95n - 350 \)[/tex] opens downwards (since the coefficient of [tex]\( n^2 \)[/tex] is negative).
- The roots are [tex]\( n = 5 \)[/tex] and [tex]\( n = 14 \)[/tex].

Therefore, the inequality [tex]\( -5n^2 + 95n - 350 \geq 0 \)[/tex] is satisfied for values of [tex]\( n \)[/tex] between the roots, inclusive:
[tex]\[ 5 \leq n \leq 14 \][/tex]

Thus, the set of possible values of [tex]\( n \)[/tex] for which [tex]\( S_n \geq 350 \)[/tex] is:
[tex]\[ n \in \{5, 6, 7, 8, 9, 10, 11, 12, 13, 14\} \][/tex]