4. If [tex]\frac{1}{x} - \frac{1}{y} = \frac{1}{z}[/tex], then [tex]z[/tex] is equal to:

(a) [tex]y - x[/tex]

(b) [tex]x - y[/tex]

(c) [tex]\frac{y - x}{xy}[/tex]

(d) [tex]\frac{xy}{y - x}[/tex]



Answer :

Let's start with the given equation:

[tex]\[ \frac{1}{x} - \frac{1}{y} = \frac{1}{z} \][/tex]

First, we need to find a common denominator for the fractions on the left-hand side:

[tex]\[ \frac{1}{x} - \frac{1}{y} = \frac{y}{xy} - \frac{x}{xy} = \frac{y - x}{xy} \][/tex]

So the equation becomes:

[tex]\[ \frac{y - x}{xy} = \frac{1}{z} \][/tex]

Next, we'll cross-multiply to solve for [tex]\( z \)[/tex]:

[tex]\[ z \cdot \frac{y - x}{xy} = 1 \][/tex]

Then, simplify this equation by eliminating the fraction:

[tex]\[ z \cdot (y - x) = xy \][/tex]

Now, isolate [tex]\( z \)[/tex] on one side:

[tex]\[ z = \frac{xy}{y - x} \][/tex]

So, based on the options provided, the value of [tex]\( z \)[/tex] is:

(d) [tex]\(\frac{xy}{y - x}\)[/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{d} \][/tex]