Perform the operation if possible.

[tex]\[ \left[\begin{array}{rr} 0 & 0 \\ -8 & 1 \end{array}\right] - \left[\begin{array}{rr} 7 & 3 \\ -3 & 1 \end{array}\right] \][/tex]

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

A. [tex]\[ \left[\begin{array}{rr} 0 & 0 \\ -8 & 1 \end{array}\right] - \left[\begin{array}{rr} 7 & 3 \\ -3 & 1 \end{array}\right] = \left[\begin{array}{rr} \square & \square \\ \square & \square \end{array}\right] \][/tex]



Answer :

To perform the matrix subtraction, we subtract each corresponding element of Matrix [tex]\( B \)[/tex] from Matrix [tex]\( A \)[/tex]. Here are the given matrices:

[tex]\[ A = \left[\begin{array}{rr} 0 & 0 \\ -8 & 1 \end{array}\right] \][/tex]

[tex]\[ B = \left[\begin{array}{rr} 7 & 3 \\ -3 & 1 \end{array}\right] \][/tex]

We will calculate the element-wise subtraction step by step.

1. Subtract the element in the first row, first column of [tex]\( B \)[/tex] from the element in the first row, first column of [tex]\( A \)[/tex]:
[tex]\[ 0 - 7 = -7 \][/tex]

2. Subtract the element in the first row, second column of [tex]\( B \)[/tex] from the element in the first row, second column of [tex]\( A \)[/tex]:
[tex]\[ 0 - 3 = -3 \][/tex]

3. Subtract the element in the second row, first column of [tex]\( B \)[/tex] from the element in the second row, first column of [tex]\( A \)[/tex]:
[tex]\[ -8 - (-3) = -8 + 3 = -5 \][/tex]

4. Subtract the element in the second row, second column of [tex]\( B \)[/tex] from the element in the second row, second column of [tex]\( A \)[/tex]:
[tex]\[ 1 - 1 = 0 \][/tex]

Combining these results, we get the resulting matrix:

[tex]\[ A - B = \left[\begin{array}{rr} -7 & -3 \\ -5 & 0 \end{array}\right] \][/tex]

Therefore, the correct choice is:
A.
[tex]\[ \left[\begin{array}{rr} 0 & 0 \\ -8 & 1 \end{array}\right]-\left[\begin{array}{rr} 7 & 3 \\ -3 & 1 \end{array}\right]= \left[\begin{array}{rr} -7 & -3 \\ -5 & 0 \end{array}\right] \][/tex]