Answer :
To perform the matrix subtraction, we subtract each corresponding element of Matrix [tex]\( B \)[/tex] from Matrix [tex]\( A \)[/tex]. Here are the given matrices:
[tex]\[ A = \left[\begin{array}{rr} 0 & 0 \\ -8 & 1 \end{array}\right] \][/tex]
[tex]\[ B = \left[\begin{array}{rr} 7 & 3 \\ -3 & 1 \end{array}\right] \][/tex]
We will calculate the element-wise subtraction step by step.
1. Subtract the element in the first row, first column of [tex]\( B \)[/tex] from the element in the first row, first column of [tex]\( A \)[/tex]:
[tex]\[ 0 - 7 = -7 \][/tex]
2. Subtract the element in the first row, second column of [tex]\( B \)[/tex] from the element in the first row, second column of [tex]\( A \)[/tex]:
[tex]\[ 0 - 3 = -3 \][/tex]
3. Subtract the element in the second row, first column of [tex]\( B \)[/tex] from the element in the second row, first column of [tex]\( A \)[/tex]:
[tex]\[ -8 - (-3) = -8 + 3 = -5 \][/tex]
4. Subtract the element in the second row, second column of [tex]\( B \)[/tex] from the element in the second row, second column of [tex]\( A \)[/tex]:
[tex]\[ 1 - 1 = 0 \][/tex]
Combining these results, we get the resulting matrix:
[tex]\[ A - B = \left[\begin{array}{rr} -7 & -3 \\ -5 & 0 \end{array}\right] \][/tex]
Therefore, the correct choice is:
A.
[tex]\[ \left[\begin{array}{rr} 0 & 0 \\ -8 & 1 \end{array}\right]-\left[\begin{array}{rr} 7 & 3 \\ -3 & 1 \end{array}\right]= \left[\begin{array}{rr} -7 & -3 \\ -5 & 0 \end{array}\right] \][/tex]
[tex]\[ A = \left[\begin{array}{rr} 0 & 0 \\ -8 & 1 \end{array}\right] \][/tex]
[tex]\[ B = \left[\begin{array}{rr} 7 & 3 \\ -3 & 1 \end{array}\right] \][/tex]
We will calculate the element-wise subtraction step by step.
1. Subtract the element in the first row, first column of [tex]\( B \)[/tex] from the element in the first row, first column of [tex]\( A \)[/tex]:
[tex]\[ 0 - 7 = -7 \][/tex]
2. Subtract the element in the first row, second column of [tex]\( B \)[/tex] from the element in the first row, second column of [tex]\( A \)[/tex]:
[tex]\[ 0 - 3 = -3 \][/tex]
3. Subtract the element in the second row, first column of [tex]\( B \)[/tex] from the element in the second row, first column of [tex]\( A \)[/tex]:
[tex]\[ -8 - (-3) = -8 + 3 = -5 \][/tex]
4. Subtract the element in the second row, second column of [tex]\( B \)[/tex] from the element in the second row, second column of [tex]\( A \)[/tex]:
[tex]\[ 1 - 1 = 0 \][/tex]
Combining these results, we get the resulting matrix:
[tex]\[ A - B = \left[\begin{array}{rr} -7 & -3 \\ -5 & 0 \end{array}\right] \][/tex]
Therefore, the correct choice is:
A.
[tex]\[ \left[\begin{array}{rr} 0 & 0 \\ -8 & 1 \end{array}\right]-\left[\begin{array}{rr} 7 & 3 \\ -3 & 1 \end{array}\right]= \left[\begin{array}{rr} -7 & -3 \\ -5 & 0 \end{array}\right] \][/tex]