Answer :

Certainly! Let's combine the like terms in the expression:

[tex]\[ 3y + 4x^2 - 3x^2 - 2y + x^2 + 2y - 3x^3 \][/tex]

### Step-by-Step Solution:

1. Identify like terms:
- Terms with [tex]\(y\)[/tex]: [tex]\(3y, -2y,\)[/tex] and [tex]\(2y\)[/tex]
- Terms with [tex]\(x^2\)[/tex]: [tex]\(4x^2, -3x^2,\)[/tex] and [tex]\(x^2\)[/tex]
- Terms with [tex]\(x^3\)[/tex]: [tex]\(-3x^3\)[/tex] (only one term)

2. Combine the [tex]\(y\)[/tex] terms:
[tex]\[ 3y - 2y + 2y \][/tex]
We can combine these by adding or subtracting the coefficients:
[tex]\[ (3 - 2 + 2)y = 3y \][/tex]

3. Combine the [tex]\(x^2\)[/tex] terms:
[tex]\[ 4x^2 - 3x^2 + x^2 \][/tex]
Similarly, combine the coefficients:
[tex]\[ (4 - 3 + 1)x^2 = 2x^2 \][/tex]

4. Combine the [tex]\(x^3\)[/tex] term:
[tex]\[ -3x^3 \][/tex]
This remains as it is because there are no other [tex]\(x^3\)[/tex] terms to combine.

5. Write the simplified expression:
Combining all the simplified like terms, we get:
[tex]\[ -3x^3 + 2x^2 + 3y \][/tex]

Thus, the final simplified expression is:

[tex]\[ -3x^3 + 2x^2 + 3y \][/tex]

### Solution:
[tex]\[ -3x^3 + 2x^2 + 3y \][/tex]