Answer :
To determine the units of the student's final answer in the given stoichiometry problem, let's carefully analyze and cancel out the units step by step.
The equation provided is:
[tex]$ \frac{(0.38\ L)\left(\frac{1\ mL}{10^{-3}\ L}\right)\left(2.00\ \frac{g}{mL}\right)}{\left(73.34\ \frac{g}{mol}\right)} = ? $[/tex]
### Step-by-Step Unit Analysis:
1. Convert volume from liters to milliliters:
[tex]$ 0.38\ L \times \left(\frac{1\ mL}{10^{-3} L}\right) $[/tex]
- Units:
[tex]$ L \times \left(\frac{mL}{L}\right) $[/tex]
- Result:
[tex]$ mL $[/tex]
2. Calculate the mass in grams using the density:
[tex]$ (0.38\ L \times 1000 \frac{mL}{L}) \times 2.00\ \frac{g}{mL} $[/tex]
- Units:
[tex]\[ \left(mL\right) \times \left(\frac{g}{mL}\right) \][/tex]
- Result:
[tex]\[ g \][/tex]
3. Calculate the amount in moles by dividing by the molar mass:
[tex]$ \frac{(0.38\ L \times 1000 \frac{mL}{L}) \times 2.00\ \frac{g}{mL}}{73.34\ \frac{g}{mol}} $[/tex]
- Units:
[tex]\[ \frac{g}{\frac{g}{mol}} = mol \][/tex]
### Conclusion:
After canceling out all the intermediate units, the final unit of the student's answer is:
[tex]$ \boxed{mol} $[/tex]
The equation provided is:
[tex]$ \frac{(0.38\ L)\left(\frac{1\ mL}{10^{-3}\ L}\right)\left(2.00\ \frac{g}{mL}\right)}{\left(73.34\ \frac{g}{mol}\right)} = ? $[/tex]
### Step-by-Step Unit Analysis:
1. Convert volume from liters to milliliters:
[tex]$ 0.38\ L \times \left(\frac{1\ mL}{10^{-3} L}\right) $[/tex]
- Units:
[tex]$ L \times \left(\frac{mL}{L}\right) $[/tex]
- Result:
[tex]$ mL $[/tex]
2. Calculate the mass in grams using the density:
[tex]$ (0.38\ L \times 1000 \frac{mL}{L}) \times 2.00\ \frac{g}{mL} $[/tex]
- Units:
[tex]\[ \left(mL\right) \times \left(\frac{g}{mL}\right) \][/tex]
- Result:
[tex]\[ g \][/tex]
3. Calculate the amount in moles by dividing by the molar mass:
[tex]$ \frac{(0.38\ L \times 1000 \frac{mL}{L}) \times 2.00\ \frac{g}{mL}}{73.34\ \frac{g}{mol}} $[/tex]
- Units:
[tex]\[ \frac{g}{\frac{g}{mol}} = mol \][/tex]
### Conclusion:
After canceling out all the intermediate units, the final unit of the student's answer is:
[tex]$ \boxed{mol} $[/tex]