Answer :

Sure! Let's combine the like terms in the given expression step by step.

The given expression is:
[tex]\[ -4 x^2 - 3 + 4 + 3 - 5 y^2 + 3 y^2 - 5 y^2 \][/tex]

First, we need to group the like terms together. Let's start with the [tex]\(x^2\)[/tex] terms, the constant terms, and the [tex]\(y^2\)[/tex] terms separately:

1. [tex]\(x^2\)[/tex] terms:
[tex]\[ -4 x^2 \][/tex]
We only have the term [tex]\(-4 x^2\)[/tex].

2. Constant terms:
[tex]\[ -3 + 4 + 3 \][/tex]
Adding these together:
[tex]\[ -3 + 4 = 1 \][/tex]
[tex]\[ 1 + 3 = 4 \][/tex]
So, the combined constant term is [tex]\(4\)[/tex].

3. [tex]\(y^2\)[/tex] terms:
[tex]\[ -5 y^2 + 3 y^2 - 5 y^2 \][/tex]
Adding these together:
[tex]\[ -5 y^2 + 3 y^2 = -2 y^2 \][/tex]
[tex]\[ -2 y^2 - 5 y^2 = -7 y^2 \][/tex]
So, the combined [tex]\(y^2\)[/tex] term is [tex]\(-7 y^2\)[/tex].

Now, let's write the expression with the combined like terms:

[tex]\[ -4 x^2 + 4 - 7 y^2 \][/tex]

Hence, the final simplified expression is:
[tex]\[ -4 x^2 + 4 - 7 y^2 \][/tex]