Evaluate [tex]\log_b\left(\frac{1}{b^3}\right)[/tex].

A. [tex]-3[/tex]
B. [tex]3[/tex]
C. [tex]-\frac{1}{3}[/tex]
D. [tex]\frac{1}{3}[/tex]



Answer :

To evaluate [tex]\(\log_b\left(\frac{1}{b^3}\right)\)[/tex], let's start with simplifying the argument of the logarithm:

1. Given the argument [tex]\(\frac{1}{b^3}\)[/tex], we can rewrite it using the property of exponents:
[tex]\[ \frac{1}{b^3} = b^{-3} \][/tex]

2. Now we have [tex]\(\log_b(b^{-3})\)[/tex].

3. Next, use the fundamental property of logarithms which states that [tex]\(\log_b(b^x) = x\)[/tex]. This property simplifies our expression:
[tex]\[ \log_b(b^{-3}) = -3 \][/tex]

Therefore, the value of [tex]\(\log_b\left(\frac{1}{b^3}\right)\)[/tex] is [tex]\(-3\)[/tex].

So the correct answer is:
[tex]\[ -3 \][/tex]