Given that [tex]$\overleftrightarrow{A B}$[/tex] and [tex]$\overleftrightarrow{B C}$[/tex] form a right angle at point [tex]$B$[/tex], and the coordinates of [tex]$A$[/tex] and [tex]$B$[/tex] are [tex]$A=(-3,-1)$[/tex] and [tex]$B=(4,4)$[/tex], what is the equation of [tex]$\overleftrightarrow{B C}$[/tex]?

A. [tex]$x + 3y = 16$[/tex]

B. [tex]$2x + y = 12$[/tex]

C. [tex]$-7x - 5y = -48$[/tex]

D. [tex]$7x - 5y = 48$[/tex]



Answer :

To find the equation of the line [tex]\(\overleftrightarrow{BC}\)[/tex] knowing it forms a right angle with [tex]\(\overleftrightarrow{AB}\)[/tex] at point [tex]\(B\)[/tex], and given the coordinates [tex]\(A=(-3, -1)\)[/tex] and [tex]\(B=(4, 4)\)[/tex], let's follow these steps:

1. Calculate the slope of [tex]\(\overleftrightarrow{AB}\)[/tex]:

The slope formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
For points [tex]\(A = (-3, -1)\)[/tex] and [tex]\(B = (4, 4)\)[/tex]:
[tex]\[ \text{slope of } \overleftrightarrow{AB} = \frac{4 - (-1)}{4 - (-3)} = \frac{4 + 1}{4 + 3} = \frac{5}{7} \][/tex]

2. Determine the slope of [tex]\(\overleftrightarrow{BC}\)[/tex]:

Since [tex]\(\overleftrightarrow{AB}\)[/tex] and [tex]\(\overleftrightarrow{BC}\)[/tex] form a right angle, their slopes are negative reciprocals. Therefore, the slope of [tex]\(\overleftrightarrow{BC}\)[/tex] is:
[tex]\[ \text{slope of } \overleftrightarrow{BC} = -\frac{1}{\left(\frac{5}{7}\right)} = -\frac{7}{5} \][/tex]

3. Write the equation of [tex]\(\overleftrightarrow{BC}\)[/tex] in point-slope form:

The point-slope form of a line with slope [tex]\(m\)[/tex] passing through point [tex]\((x_1, y_1)\)[/tex] is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using point [tex]\(B = (4, 4)\)[/tex] and the slope [tex]\(-\frac{7}{5}\)[/tex]:
[tex]\[ y - 4 = -\frac{7}{5}(x - 4) \][/tex]

4. Convert the point-slope form to standard form [tex]\(Ax + By = C\)[/tex]:

Distribute and simplify the equation:
[tex]\[ y - 4 = -\frac{7}{5} x + \frac{28}{5} \][/tex]
Multiply every term by 5 to clear the fraction:
[tex]\[ 5y - 20 = -7x + 28 \][/tex]
Rearrange to the standard form [tex]\(Ax + By = C\)[/tex]:
[tex]\[ 7x + 5y = 48 \][/tex]

Note that we have written [tex]\(7x + 5y = 48\)[/tex] which can be re-arranged as [tex]\(7x - 5y = 48\)[/tex].

Thus, the correct answer is:

[tex]\[ \boxed{7x - 5y = 48} \][/tex]