To simplify the expression [tex]\(2 \cdot 4^2 \cdot \left(128^{\frac{1}{4}}\right)\)[/tex], let's break it down into steps step-by-step.
1. Calculate [tex]\(4^2\)[/tex]:
[tex]\[
4^2 = 16
\][/tex]
2. Calculate [tex]\(128^{\frac{1}{4}}\)[/tex]:
[tex]\[
128^{\frac{1}{4}} \approx 3.363585661014858
\][/tex]
3. Multiply the results by 2:
[tex]\[
2 \cdot 16 \cdot 3.363585661014858
\][/tex]
4. Perform the multiplication:
[tex]\[
(2 \cdot 16) = 32
\][/tex]
[tex]\[
32 \cdot 3.363585661014858 \approx 107.63474115247546
\][/tex]
Hence, the expression [tex]\(2 \cdot 4^2 \cdot \left(128^{\frac{1}{4}}\right)\)[/tex] simplifies to approximately [tex]\(107.63474115247546\)[/tex].