Answer :
Certainly! Let's work through each part of this problem step-by-step.
### Part 1: User-defined MATLAB Function for `y(x)`
We'll define the function `y(x)` and make sure it handles vector input for `x`.
1. Define the Function `y`:
```matlab
function y = y_function(x)
y = -2 x.^5 + 3 x.^4 - x.^3 + 6 x.^2 - 2 x + 4;
end
```
2. Calculate `y(-2)` and `y(4)`:
To calculate the values, we call the function with the specific inputs:
```matlab
% Calculate y(-2)
y_neg2 = y_function(-2);
% Calculate y(4)
y_4 = y_function(4);
% Display the results
disp(['y(-2) = ', num2str(y_neg2)]);
disp(['y(4) = ', num2str(y_4)]);
```
3. Plot the Function for `-4 <= x <= 8`:
To plot the function over a specified interval, use:
```matlab
% Create the x values
x = linspace(-4, 8, 1000);
% Calculate the corresponding y values
y = y_function(x);
% Plot the function
figure;
plot(x, y);
xlabel('x');
ylabel('y(x)');
title('Plot of y(x) for -4 <= x <= 8');
grid on;
```
### Part 2: User-defined MATLAB Function for `r(\theta)`
We'll define the function `r(\theta)` for given angle `\theta`.
1. Define the Function `r`:
```matlab
function r = r_function(theta)
r = 3 sin(3 cos(0.5 theta));
end
```
2. Calculate `r(pi/6)` and `r(5pi/6)`:
To calculate these specific values:
```matlab
% Calculate r(pi/6)
r_pi_6 = r_function(pi / 6);
% Calculate r(5 pi / 6)
r_5pi_6 = r_function(5 pi / 6);
% Display the results
disp(['r(pi/6) = ', num2str(r_pi_6)]);
disp(['r(5pi/6) = ', num2str(r_5pi_6)]);
```
3. Polar Plot `r(\theta)` for `0 <= \theta <= 4\pi`:
To create a polar plot over the interval:
```matlab
% Create the theta values
theta = linspace(0, 4 pi, 1000);
% Calculate the corresponding r values
r = r_function(theta);
% Polar plot
figure;
polarplot(theta, r);
title('Polar Plot of r(\theta) for 0 <= \theta <= 4\pi');
```
### Part 3: Fuel Efficiency Conversion Function
We'll now write a function to convert fuel efficiency from miles per gallon (mpg) to liters per 100 kilometers (L/100 km).
1. Define the Conversion Function:
```matlab
function Lkm = mpgToLpkm(mpg)
% Conversion factor: 1 mile/gallon to 1 kilometer/liter
miles_per_km = 1 / 1.60934; % miles per kilometer
liters_per_gallon = 3.78541; % liters per gallon
% Conversion from mpg to L/100 km
Lkm = liters_per_gallon / (miles_per_km mpg) 100;
% Round to the nearest hundredth
Lkm = round(Lkm, 2);
end
```
To use this function:
```matlab
% Convert 25 miles/gallon to L/100 km
Lkm_25mpg = mpgToLpkm(25);
% Display the result
disp(['25 mpg is equivalent to ', num2str(Lkm_25mpg), ' liters per 100 km']);
```
By following these detailed instructions, you should be able to define the necessary MATLAB functions and perform the calculations and visualizations as required.
### Part 1: User-defined MATLAB Function for `y(x)`
We'll define the function `y(x)` and make sure it handles vector input for `x`.
1. Define the Function `y`:
```matlab
function y = y_function(x)
y = -2 x.^5 + 3 x.^4 - x.^3 + 6 x.^2 - 2 x + 4;
end
```
2. Calculate `y(-2)` and `y(4)`:
To calculate the values, we call the function with the specific inputs:
```matlab
% Calculate y(-2)
y_neg2 = y_function(-2);
% Calculate y(4)
y_4 = y_function(4);
% Display the results
disp(['y(-2) = ', num2str(y_neg2)]);
disp(['y(4) = ', num2str(y_4)]);
```
3. Plot the Function for `-4 <= x <= 8`:
To plot the function over a specified interval, use:
```matlab
% Create the x values
x = linspace(-4, 8, 1000);
% Calculate the corresponding y values
y = y_function(x);
% Plot the function
figure;
plot(x, y);
xlabel('x');
ylabel('y(x)');
title('Plot of y(x) for -4 <= x <= 8');
grid on;
```
### Part 2: User-defined MATLAB Function for `r(\theta)`
We'll define the function `r(\theta)` for given angle `\theta`.
1. Define the Function `r`:
```matlab
function r = r_function(theta)
r = 3 sin(3 cos(0.5 theta));
end
```
2. Calculate `r(pi/6)` and `r(5pi/6)`:
To calculate these specific values:
```matlab
% Calculate r(pi/6)
r_pi_6 = r_function(pi / 6);
% Calculate r(5 pi / 6)
r_5pi_6 = r_function(5 pi / 6);
% Display the results
disp(['r(pi/6) = ', num2str(r_pi_6)]);
disp(['r(5pi/6) = ', num2str(r_5pi_6)]);
```
3. Polar Plot `r(\theta)` for `0 <= \theta <= 4\pi`:
To create a polar plot over the interval:
```matlab
% Create the theta values
theta = linspace(0, 4 pi, 1000);
% Calculate the corresponding r values
r = r_function(theta);
% Polar plot
figure;
polarplot(theta, r);
title('Polar Plot of r(\theta) for 0 <= \theta <= 4\pi');
```
### Part 3: Fuel Efficiency Conversion Function
We'll now write a function to convert fuel efficiency from miles per gallon (mpg) to liters per 100 kilometers (L/100 km).
1. Define the Conversion Function:
```matlab
function Lkm = mpgToLpkm(mpg)
% Conversion factor: 1 mile/gallon to 1 kilometer/liter
miles_per_km = 1 / 1.60934; % miles per kilometer
liters_per_gallon = 3.78541; % liters per gallon
% Conversion from mpg to L/100 km
Lkm = liters_per_gallon / (miles_per_km mpg) 100;
% Round to the nearest hundredth
Lkm = round(Lkm, 2);
end
```
To use this function:
```matlab
% Convert 25 miles/gallon to L/100 km
Lkm_25mpg = mpgToLpkm(25);
% Display the result
disp(['25 mpg is equivalent to ', num2str(Lkm_25mpg), ' liters per 100 km']);
```
By following these detailed instructions, you should be able to define the necessary MATLAB functions and perform the calculations and visualizations as required.